OpenHCI

Open Host Controller Interface Specification

for USB

Compaqg
M icr osoft
National Semiconductor

10/06/00 4:40 PM
Release: 1.0a

OpenHCI - Open Host Contraller Interface Specification for USB

Adopter’s Agreement for
Open Host Controller Interface Reciprocal Covenant

READ THIS PRIOR TO IMPLEMENTATION OF THIS SPECIFICATION.
IMPLEMENTATION OF THIS SPECIFICATION SHALL CONSTITUTE YOUR
LEGALLY BINDING ACCEPTANCE OF THE TERMS OFFERED IN THIS PATENT
COVENANT AGREEMENT. IF AN ENTITY DOES NOT ACCEPT THE TERMS
OFFERED IN THIS PATENT COVENANT AGREEMENT, SUCH ENTITY IS NOT A
RECIPIENT OF THE COVENANT CONTAINED HEREIN AND SHOULD NOT
IMPLEMENT THE SPECIFICATION. THE PROMOTERS REQUEST THAT SUCH
ENTITY RETURN THE SPECIFICATION TO THE PROMOTERS.

This is a patent covenant agreement by parties wishing to adopt Open HCI.

As used in this Agreement:

?? The "Promoters” are the parties who have initially adopted Open HCI. A list of their
names is available upon request to the Open HCI Clerk; initially the Clerk is Compaq
Computer Corporation.

?? “Adopter” is the entity that has accepted this Agreement.

?? “Fellow Adopters” are the Promoters and any other entity which has accepted an
identical counterpart of this Agreement.

?? “Affiliate” is an entity which directly or indirectly controls, is controlled by, or is under
common control with another entity, so long as such control exists. “Control” means
beneficial ownership of more than fifty percent of the voting stock or equity in an entity.

?? “Specification” means the document entitled “Open Host Controller Interface
Specification, revision 1.0,” authored and published by the Promoters and any Updates
identified as set out in Section 2.

1. Covenants

1.1. Grants of Covenants. The following covenant has been granted by the Promoters to
each other. Upon Adopter’s execution of this Agreement, it is granted by Adopter
to all Fellow Adopters, and the grants of all Fellow Adopters shall extend to Adopter.
In each case, the party (Promoter, Adopter, or Fellow Adopter) granting the
covenant is referred to as the “Grantor.”

OpenHCI - Open Host Contraller Interface Specification for USB

Subject to the other terms of this Agreement, Grantor, on behalf of itself and its Affiliates,
covenants not to sue or otherwise assert a claim against any Fellow Adopter or its
Affiliates, or its customers, subcontractors, resellers, or users, based upon the
manufacture, use, lease, sale or other transfer of any product that infringes a claim of a
patent held by Grantor, which claim is infringed by:
(i) the implementation or use of the methods, protocols, interfaces, or
interoperability criteria set out in the Specification, or
(i) any apparatus required by the Specification which is required to implement such
methods, protocols, interfaces, or interoperability criteria,;
where such infringement would not have occurred but for the implementation of the
Specification, and where such infringement either:
(a) could not have been avoided by another commercially reasonable
implementation of the Specification, or
(b) resulted from use of an example included in the Specification.
The foregoing covenant not to sue extends to any entity which is not a
Fellow Adopter only to the extent that such entity grants a reciprocal covenant, either
expressly or by implication through the non-assertion of such claims against Grantor
or a Fellow Adopter.
1.2. Acceptance of Covenants. Adopter hereby accepts the covenants granted by the
Fellow Adopters.

2. Open HCI Specification Administration, Access and Updates

2.1. Administration. The Promoters may designate a “Clerk” from time to time. Initially,
the Clerk will be Compaq Computer Corporation. The Clerk is responsible for:
2.1.1. Maintaining current copies of the Specification and providing access to such

copies to the Fellow Adopters upon request.

2.2. Limits on Clerk. The Clerk is not an agent of the Promoters or Fellow Adopters.
The Promoters may designate a replacement Clerk at any time. The Clerk may
resign as Clerk at will.

2.3. Access. Fellow Adopters may purchase copies or download the Specification.

2.4. Updates. The Promoters may issue an update, revision, or extension of some or all
of the Specification (an “Update”) on or prior to June 1, 1997. Provided that the
Promoters have made the Specification generally available with the notation
“Implementation of this Specification is governed by the terms of the Open HCI
Covenant,” the covenants referenced in this Agreement shall extend to the Update
except as specifically provided below. Issuing such an Update shall NOT terminate
any right or obligation of Adopter under this Agreement, including the covenants
granted with respect to the earlier versions of the Specification.

OpenHCI - Open Host Contraller Interface Specification for USB

2.5.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

Objection and Withdrawal. Adopter (or a Fellow Adopter) may, within 60 days after
publication of an Update, terminate this Agreement with respect to such Update and
all further revisions of the Specification. Termination shall be made by giving written
notice to the Promoters. The effect of such termination will be that the covenants
granted shall continue to apply with respect to the Specification and Updates
adopted as of 60 days prior to the date of termination shall continue in full force and
shall extend to entities who become Adopters even after such termination. No
covenant shall be deemed granted or received by such Adopter as to Updates
adopted after the date of such withdrawal.

General

No Other Licenses. Adopter neither grants nor receives any license to or right to
use any trademark, tradename, copyright, or maskwork hereunder. Except for the
rights expressly provided by this Agreement, Adopter neither grants nor receives, by
implication, or estoppel, or otherwise, any rights under any patents or other
intellectual property rights.

Limited Effect. This Agreement shall not be construed to waive any Party’s rights
under law or any other agreement except as expressly set out here.

No Warranty. Adopter acknowledges that the Specification is provided “AS IS”
WITH NO WARRANTIES WHATSOEVER, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE.

Damages. In no event will Promoters, Adopter or Fellow Adopter be liable to the
other for any loss of profits, loss of use, incidental, consequential, indirect, or special
damages arising out of this or any other Open HCI Covenant, whether or not such
party had advance notice of the possibility of such damages.

Governing Law. This Agreement shall be construed and controlled by the laws of
New York. Any litigation arising out of this Agreement shall take place in New York,
and all parties consent to jurisdiction of the State and Federal courts there.

Not Partners. Adopter understands that the Promoters are independent companies
and are not partners or joint venturers with each other. While the Promoters may
select an entity to handle certain administrative tasks for them, no party is
authorized to make any commitment on behalf of all or any of them.

Complete Agreement. Upon publication of the Specification by the Promoters, this
Agreement sets forth the entire understanding of the agreement between the
Adopters and the Promoters and supersedes all prior agreements and
understandings relating hereto. No modifications or additions to or deletions from
this Agreement shall be binding unless accepted in writing by an authorized
representative of all parties.

OpenHCI - Open Host Contraller Interface Specification for USB

Compaq Computer
Corporation

Microsoft Corporation

By:

Name

John Rose
Senior Vice President

Title

Commercial Desktop Division

Revison Table

National Semiconductor
Corporation

By:
Name
Title

Revision Number

Revision Date

Changes Made

1.0a

10/6/00 Added Appendix B, Legacy Support

Interface Specification

OpenHCI - Open Host Contraller Interface Specification for USB

TABLE OF CONTENTS

1. INTRODUGCTION ..cutiiiiesiisie sttt st st sse s et tessesbesbessesseeseeeensestessesbessessensensens 1
2. TERMS AND ABBREVIATIONS ...ttt sne st enes 2
3. ARCHITECTURAL OVERVIEW......o ittt sttt 6
G 300 I [1 4 o Yo [o 1 o I PSRRI 6
T B - L= B I = L] =T N 1N o TSR 7
3.3 HOSt CONtroller INTEITACE. ...t nne s 7
3.3.1 CommUNICAtioN ChaMEIScoueiiiiieiesere et 7
3.3 2 DAA SITUCIUIES ...ttt ettt ettt st e e et e e st e e nbe e e st e e be e snbeenbeesnneenneas 8

3.4 Host Controller Driver ReSponSIibilitiesccocvecieieieeiece e 13
3.4.1 Host Controller ManagemENT.........ccceeerierierienesiesieeeei et 13
T2 7= 070 11V To L1 72N | [0 o= oo TP 13
R A IS WAV = 0= o< 107 0 O USSP PR 14
G (oo 11 TP 14

3.5 Host Controller ReSpoNnSiDIlities. ... 14
5. L USB SHAES......ccueeieiiiie sttt sttt ettt st e bbbt ettt n e b nrenns 14
35.2 FramME MEANAOEMENTeeieeiieee ettt n e nn e e e neens 15
ST B IS . (00 =-= S 1o RS 15

4. DATA STRUCTURES ...ttt st sttt nestesneenenneeneenes 16
A1 OVEIVIBW ..eiieitiiieiieiesie st s ettt st ese et e stessesbesbeabesseesees e e s e nae s e e abesbeebe e st e neeneebeneesbenbenbennenneens 16
4.2 ENAPOINT DESCIIPTON .ttt s e b e b e 17
4.2.1 Endpoint DESCrPtOr FOMMEL...........ciiiieeiiesieeie ettt sae e re e e 17
4.2.2 Endpoint Descriptor Feld DEfINITIONS..........cooiiiiiiieeeeee e 18
4.2.3 Endpoint DesCriptor DESCIIPLON........ccveieeieecee et s 19

4.3 TranSTer DESCIIPIOIS .uiiiiiiiieiie ettt b b sr e b e 20
4.3.1 General TranSfer DESCIIPIONc.vecveeirecee ettt sae e sreeeeenee s 20
4.3.1.1 Generd Transfer DesCriptor FOMMELcoeieririeieeesiesiesie e 21

4.3.1.2 Generd Trandfer Descriptor Field DEfiNItioNS..........coveeveieecice e 21
4.3.1.3 Generd Transfer DesCriptor DeSCIPHON.ccvrerieieeiesie s 22
4.3.1.3.1 Buffer Address DEerMINGLION.........ceeerieieieniesie e snens 22

G RS I = 'o: (= B = P 22

4.3.1.3.3 CoNitiON COUES......cueeiiiiriirieriiste sttt sa e et b sbenreas 23

4.3.1.3.4 SEQUENCE BITS......oiuiiiieieeeie ettt 23

4.3.1.3.5 Transfer COMPIELION.........cceeiviiieiieeeee et 24

G I N G I = 01 (= gl = 0] £ P 24

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.1.3.6. 1 TranSMISSION EITOIS.....c..oiiiiieiieie e 25
4.3.1.3.6.2 SEOUENCE ETTONS ...cciueeee ettt sttt sttt sne e snnee s 25
4.3.1.3.6.3 SYSIOM ETOIS......coiiiiieeeiee ettt s e e sne e 27

4.3.1.3.7 SpeCial HanaliNgccovoiiiiieiiiseeeee et 27
00 I 01 I N SR 27

A3 L3372 A e 27

4.3.2 150Chron0US TranSfer DESCIIPLON.........cccveieerieeiesee ettt ae e a e 27
4.3.2.1 Isochronous Transfer DesCriptor FOMEL..........ceceeeereereseeneeresee s eie e 27
4.3.2.2 1sochronous Transfer Descriptor Feld DEfiNtionScccvveeieeienieseeeseeseee e 28
4.3.2.3 Isochronous Transfer DesCriptor DeSCHPLION...........ccevveveeiereere e eee e 28
4.3.2.3.1 BUfer ACOrESSINGccoveeieeieesieeie st ie et sttt sre e sre e e 29
4.3.2.3.2 DataPaCkel SIZe.........ccooiiiieie e 30
A.3.2.3.3 SLAUS ...cveverieeieeieeieeee et ettt ettt s reene e et aete st e tenrenrenrens 30
4.3.2.3.4 Transfer COMPIELION.........cceeiieieiiere e 30
A.3.2.3.5 TranSfEr EITOIS......cc.coiiieeeeeee ettt 30
4.3.2.35.1 TranSMISSION ETOIS.....c.oiiiiiiniirierieieee et 31
4.3.2.3.5.2 SEQUENCE ETTONS ...ttt 31
4.3.2.3.5.3 TIME EITOIS.....ueiiiiiieie sttt sttt sbe s 31
4.3.2.3.5.4 SYSLOM ETTOIS......coieieieeeee ettt s sn e ene e 33

4.3.2.3.6 SpeCial HandliNgccoueiuiiiieiesieseeeeee et 34
4.3.2.3.6. 1 NAK @NA STALL ...ooiiiiiece sttt s 34

4.3.2.4 PaCKEISIAIUSWWOIT. ..ottt sttt sae e nne s 34
4.3.2.4.1 Packet Status Word Field Definitions...........ocoeeeveenienieniee e 34

4.3.3 COMPIELION COUES......cceeieeeieeieeeesieeiee st este et e e s e e et ete e teetesseesaeeaeeneesseeneenneenns 35
4.3.3.1 Condition Code DESCITPLION.cccveeeeieeiieie e 36

4.4 Host Controller COommuUNICAtIONS ATCa8.....ccuiirieriirierisiesie st 36
4.4.1 Host Controller CommuniCations Area FOrMEL...........c.ooeeveeieneeniee e 37
4.4.2 Host Controller Communications Area DeSCIiptioNcovveeeeeeseeieseeseese e eee s 37
4.4.2.1 HeCAlNtEITUPETADIE ..o et 37
4.4.2.2 HCCAFTAMENUIMIDES ..ottt sttt sttt st sbe e 38
4.4.2.3 HCCADONEHEAN ..ottt s 38

4.5 ENAPOiNt LiSt PrOCESSING ..ueiiiiieiie et eie sttt ee et e e ae e sreenee e 39
4.6 Transfer Descriptor QUEUE ProCESSINGcocviiiiiriieieree e s 40
5. HOST CONTROLLER DRIVERooiiiiictineeee sttt st 41
5.1 Host Controller Management..........co et 41
I I R 1 1T T2 ([ST 41
Y0 I 0 I oo = 2 o I 0 o =P 42
5.1.1.2 Verify Host Controller and Allocate RESOUICES...........cccveveevieeieceesie e 42
5.1.1.3 Take Control of HOSt CONtrOlIErcceeiiiieeeeeeee s 43
5.1.1.3.1 SMM Driver, POWEr-Up......ccciiieiiieieiiesieeieseesie e seesie e see e esessseesseeeesneens 43

Vi

OpenHCI - Open Host Contraller Interface Specification for USB

5.1.1.3.2 BIOS DIIVEScoiiiiiiiieeiisieeieiesie e s et sseseeeesaesaessessessessesseeneensessessessessessens 43
5.1.1.3.3 OS DIiVEr, SMM ACHVE.....coeiiiiiiriiiesiesiieiee et sbe e 44
5.1.1.3.4 OS Driver, BIOS ACHVEcceiiiieriie sttt sae st ssessesnens 44
5.1.1.3.5 OS Driver, neither SMIM Nor BIOS..........coooiiiiiiiririseseseseeee e 44
5.1.1.3.6 SMM Driver, RE-ENIIY.......coiiiiieeesie e 45

T IS (7o [0S o | = 45
5.1.1.5Begin SENAING SOFS......coiiiieieeieeieniee ettt st sb e sre b sneesne e 45

S I @ o= = 10107 IS = =R 46
TN N U S 2 S = TSP 46
5.1. 2.2 USBOPERATIONAL ...cetitistisueeieetestesiestessessessessessesssessessestessessessessesssesssssessessessessenes 46
5.1 2.3 USBSUSPENDcuvetiterteatesseesesseeeessessessessessessesseeseessessessessessessessessensesssessessessessensenns 46
5.1 2.4 USBRESUMEc.uiiiitirtistestesite et e st sttt s be sttt et e bt sb e b bt se e e s e te st e naenrenne e 47
LA Tod 1= o 11 | = PSR 47
5.2.1 Sample Host Controller Driver DEfINItIONS..........ccccvecereereee e e 49
5.2.2 MiSCAIaNEOUS DEFINITIONS.ccveiieeieeiesiie ettt s sre e e sneeneas 49
5.2.3 Host Controller Descriptors DEfiNItIONS..........cvieereeiesiesie e 50
5.2.4 Hogt Controller Driver Descriptor DEfINIIONS........cooviieeieniineesiesee e 51
5.2.5 Host Controller ENJPOINES.........cieeieeieeeeriesiesieesie et ste e e e e e sseenaesneesseenes 53
5.2.6 Host Controller Driver Interna DefiNitioNS...........coveeieneeneee e 54
5.2.7 ENAPOINt DESCIIION LISIS...c.viiieiieeiieeeeseesie e st ee st ste e e et e e ne e nneenes 57
5.2.7.1 BUIK @0 CONLIOL.....c..eiitieiieieiieeieeee ettt sne e 57
B5.2.7. 1L AGUING. ...ttt b 57
I 8 I o= 1110 Y/ o TSP 59
B.2.7. 1.3 PAUSE......eieeeee ettt bt b nre s 62
A VA | 01 (= 1 (V] o TR OPR PR 64
5.2.7. 2.1 POIING RAE.......ccuiiiiieiiiiieeiee st sa b e 67

S . X o (o 1 0 SRR 69

I R T o= 1110 Y/ o TS 69
O.2.7. 2.4 PAUSE......coet ettt ettt ettt et ae et e ae e e be e aae e e ne e ene e ean e e neeeneenneas 70
5.2.7.31S0CHION0US ...ttt sttt s eae e 70
EIZ G T 2 (o 1 o RSSO 71

I G o= 1110 Y/ o 71
D.2.7. 3.3 PAUSE......coet ettt sttt et ae e e ne e en e e aeeeneennean 71
5.2.8 Transfer DESCrPtOr QUEUIES..........cocueeueeeeerieeeesteesieeeesseestesessseesseeseesseessessessseessesssessenees 71
52.8.1The NULL of EMPLY QUEUE........c.oiiiiieieeiesieeiesee et 71
5.2.8.2 AddiNG tO @QUEUE.........ceoueieerieeieeiesteeieceesteete s e eete e e sseeaesseesseeneesseenseeneenseenses 72
5.2.8.3 ReMOVING fromM @ QUELIE.........ccueeieieiiee ettt st 76
5.2.8.4 CANCE ...ttt et a et 77
5,29 DO0NEQUEE ...ttt ettt ettt tte e ettt e e et e e et e e st e e e eaae e e sase e e nsse e ensseeeaaeeeneeeenaeeenees 78
5.2.10 USB Bandwidth AIIOCEION..........ccceiieriirieriesierieniceeeee et 81
5.2.10.1 SCheduling OVEITUN ETOIScoouiiieieerie ettt 81
5.2.11 CoNtrolBUIKSENVICEREIO.......c..eeveeiiiieiisie sttt 82

Viii

OpenHCI - Open Host Contraller Interface Specification for USB

5.3 HOSt CoNtroller INTErTUPL......c e e s 83
B4 FrameEINteIVAl COUNTET ..o et eeaenereeeeeeeaans 88
D D RO HUD et e e e e e et e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeneeees 89

OpenHCI - Open Host Contraller Interface Specification for USB

6. HOST CONTROLLER ..ottt st 90
6.1 INTFOTUCTION .ttt ettt bbbt ne e 90
5.2 USB STALES ...ttt st b e e b e e e be e nn e e ne e eare e 90

OIS 0@ 1o = SRS 91
B.2.2 USDRESEL ..ottt st b et ettt et aenbenrenrenneas 92
B.2.3 USDSUSPENA ...ttt sttt bbbttt ettt e b nre s 92
B.2.4 USDRESUME ...ttt sttt ettt e s b e e besaeesbe et e e st e nbeentesaeensennnaas 92
6.3 Frame ManagemMENTt.. ...t s sb e b sre e naneas 93
B.3. L Frame TIMING.....ccueiiuieieiieieeie ettt be e be s e e sbeeae s e e sbeentesaeessennnans 93
6.3.2 StartOf Frame (SOF) TOKEN GENEIatioN.........cceeveeeereerieeeesieesieseesseesseseesseesessseesseseens 94
6.3.3 HecaFrameNUmMBDEr UPELE........cooiiiiiiiieeiesceie ettt s 94
O O ISy o e o Yo =253 1 o 95
I I 1T] /SRR 95
B.4. 1.1 LISt PrIOMTY ...oveieeseesieetieeeee ettt bbbttt e b e 96
Gt I I = T o [T o I PSSP 96
(3 0 220 [0 o 1= 0 o [T o3 N S 96
6.4.1.2 Endpoint DESCIIPLOr PHOMLYoieeiieeie e 98
6.4.1.3 Transfer DeSCriptor PriOMitYcceiveierieseerie et es 99
B.4.2 LISt SEVICE FIOW ...ttt b et s nne e 99
6.4.2.1 List ENADIEA CECK.......ccueiieiieiiie et 99
6.4.2.2 Locating ENAPOINt DESCIIPIONS.ccuveieeerieeiesieesiesee e siesee e ee e sre e s 101
6.4.3 ENndpoint DeSCriptor PrOCESSING........ccvieeiierieeeeseesieseesseesaeseesseeeessessseesesseesseesesneenes 102
6.4.4 Transfer DesCIiptOr PrOCESSING.....ccueiuereerieeiteeiesiee e seestee e seesre e s ssesse e e sreeeesaeees 103
6.4.4.1 1sochronous Relative Frame Number CalCulation...........ccocvvvererieienenene s 103
6.4.4.2 Packet Address and Size CalCUELioN.ccceeiiriiieeienieee e 103
6.4.4.3 Packet Transfer TimMeE ChECKcoviiiirireeiee e 105
6.4.4.4 Largest Data Packet Counter OpEration..........cceeeereeriereeneesieseesieeseeseessesseeseee e 106
6.4.4.5 StAUS WIHTEDACKocuiiicieee s 106
6.4.4.5.1 Generd Transfer Descriptor Status WrtehacKcocovvevieiennienence e 106
6.4.4.5.2 1sochronous Transfer Descriptor Status Writehackcocvecvveievvccievvesennn, 107
6.4.4.6 Transfer DesCriptor REHIEMENT.........coovoiiieeieeee e e 107
B.4.5DONE QUELIE ...ttt et e e e e e et e e et e e e e e e e e e anre e e e aansaeeeeenreeeeennreeeeann 108
6.4.5.1 Done Queue INErTUPL COUNLEYoriieeieieiee e eie et e e seeesne e 108
6.5 INTEITUPT PrOCESSING cviiiiieiiciesteeie sttt te sttt et e e nte e sseeteeneesnennseens 109
6.5.1 SChedUlINGOVEITUN EVENT ..ottt 109
6.5.2 WritehaCkDONEHEAH EVENL..........cccoiiiiiiiierieneee s 110
6.5.3 STATOFFrAME BEVENL ... 110
6.5.4 ReSUMEDEECIEN EVENLccueieieieieiiste et 110
6.5.5 UNreCoVErablEEITOr EVENL........ccciiiiiiiie et e 110
6.5.6 FrameNumberOVEfIOW BEVENL..........ccooi i e 110

OpenHCI - Open Host Contraller Interface Specification for USB

6.5.7 ROOIHUDSIAtUSChaNgE EVENTcc.ooieieeeeee e e 111
6.5.8 OWNErshipChangE EVENc..ociieeie ettt 111
6.6 ROOT HUD ...t sre e 111
7. OPERATIONAL REGISTERS ..ottt 112
7.1 The Control and Status Partition ... 113
7. 1.1 HCREVISION REGIFENocueeieeie ettt esba e e ssaesneenseenaenseeneennee e 113
48 W o (o @o gL ol m = o = R 113
7.1.3 HCCOMMANASIAtUS REJITENccueeiereeiteeieeeeseesee et ee et e e s esesneesseeneesnee s 116

7. 1A HCINtErrUPtSIALUS REGITEN ..ottt 117
7.1.5 HelnterruptENabI€ REJISENcocueeiecee et 120
7.1.6 HelnterruptDiSabl@ REJISIENcooveeieiee et e 121
7.2 Memory PoiNter Partition ..o iioiecie ettt 122
N N o ol o (OO o1 = R 122
7.2.2 HCPeriodCurrentED REJISENc.ccceieeceeeces ettt 122
7.2.3 HCCONtrOIHEAAED REGIFES ..ottt 123
7.2.4 HcControlCUrrentED REJISENcccueieeriieieeee ettt see e e e 123
7.2.5 HCBUIKHEAAED REJISENccueiiiiiieie ettt 124
7.2.6 HCBUIKCUITeNtED REJIFEN........coiuieieceecteesie e esie et e st ae e s e se e snee s 124
7.2.7 HCDONEHEAA REJISEN ...ttt st 125
7.3 Frame CouNter PartitioN ... 125
7.3. L HCFMINEI VAl REGIFEN......c..eiiiiieiteeie ettt 125
7.3.2 HCFMReMAINING REJISEN ..ottt 126
7.3.3 HCFMNUMDEN REJISES ...ttt st 127
7.3. 4 HCPEriodiCTArt REGISEScveeeeeeeieie ettt esre e snee s 127
7.3.5 HCLSTreshold REQISIENccuiiieieie et 128
7.4 ROOt HUD PArtition ...cc.eceiceeeee e 128
7.4.1 HCRNDESCI PO A REGISES ...ttt sttt st 129
7.4.2 HCRNDESCIIPLOrB REJITES ...ttt sttt 130

7. 4.3 HCRNSIAIUS REJITEN.....c.eeiiieieeieestee ettt sttt b et s b et ne e be et e sne e 131
7.4.4 HCRhPOrtStatug[1:NDP] REJISESoeceeeieeeiecieceeie ettt 133
APPENDIX A—PCI INTERFACE ..ottt s 132
PCI CONFIGURATION ..ottt sttt sttt sb bbb enes 137
PCI Configuration Spaces for OpenHCI-compliant USB Host Controller 138
COMMAND REJISIEoviiteitieiieiieie ettt sttt sttt st be st bt e e s et saenbe e b e 139
CLASS CODE REJISESciviiveeiieiieieiesie e sie et ee e see e stestessesseese e sseeaensessessessessessenns 139
BAR _OHCI REJISENcouiiiiiesiisie sttt st st sttt sttt b bt e bbb e b 140

Xi

OpenHCI - Open Host Contraller Interface Specification for USB

APPENDIX B—LEGACY SUPPORT INTERFACE SPECIFICATIONc.cccocvvivrirennens 136
OVERVIEW ...ttt ettt bbbttt e et et et s b bt b e neeneens 141
OPERATIONAL THEORY ..ttt st st ae st st snesnennenneeneens 142
Keyboard/MOUSE INPUL ..ottt sne e 142
(=) Y o ToX= 1o IO T UL § o LU | ST 143
EMUIAtION INTEITUPTS ..ooiieececee ettt et st ae et e naenne e e 143
Dz o = YT (0 0T 07 o RS 144
GALE A 20 SEOUENCE.......eeeiutieiitieesteeesiteessiteessteeessseeesbeeesbeeesbeeesaseeesaseessaseesasseesnseeesnneeennneeas 144
SYSTEM REQUIREMENTS ..ottt sttt st 145
HOSt CONroller MapPinNg .ocueceeece e ee sttt e st e st seesseesesneesneenneens 145
Y1V IS TTo [= 11T o [USSR 146
Intercept Port 60h and 64N ACCESSESooiiiiecieceece et 146
LN LT U] o ST PP RO 146
RUN-TIME MEMIOIY ..ottt sttt e ettt et e e st e et esneesseentesseenneensesneennennneens 146
PROGRAMMING INTERFACE ..ottt sttt st 147
Modifications t0 eXiStING FEQISTEIS. ... e 147
[0 R S Y S Lo gl = o 1 = TR 147
LegacCy SUPPOIT REGISTEIS ..o ettt ettt ettt ae e e s te e e sne e e 147
HCEINPUL REJISIEN ...ttt ettt b et et sae e b e st e be et 148
HCEOULPUL REGISEN ..ottt sttt st e s e ae e e e se e teeneesneenneeneenneenes 148
[0 LT Y o1 = (SRR 149

[o= o a1 Lo I =0 = S 150
IMPLEMENTATION NOTESottt sttt st st 151
Emulation INterrupt DECOUEcuvieeieeeee ettt sne e 151
AAL20 GALE... .ot b e et ae e h e e e b e e eae e e Re e aReeeabeeaaeeaneeaneennne e e 151

Xii

OpenHCI - Open Host Contraller Interface Specification for USB

LIST OF FIGURES

FIQUrE 3-1: USB FOCUS ATEBS......ccueeieeiie et etectee st et st e s e te st esteeaesaeesseeseeneesseentesnneaneeneeneenneenns 6
Figure 3-2: CommuUNICAION ChaMNEIS.........cc.eiieiieeee e 8
Figure 3-3: TYPICA LiSt SITUCIUIE.........eoiveeieceeceeecte ettt ettt esr e enee s 10
Figure 3-4: INterrupt ED SITUCIUNE........cc.oiuiieceeeeee ettt 11
Figure 3-5: Sample Interrupt Endpoint SCheduleoovveieiecie e 12
Figure 3-6: Frame Banawidth AIOCAION............ocueriiiiiiiineeeee e 13
Figure 4-1: ENAPOIN DESCIIPLONcviiveiieeiieieeieieie sttt bbb 17
Figure 4-2: General TD FOMIALcccueiieieeecee ettt ettt e s reeneenee s 21
Figure 4-3: 1SOChroN0OUS TD FOMIALeoueiiiiieieiese ettt 27
Figure 4-4: Packet StatuS WOrd FOMMIELcc.eeiuiiieiiciiecie et 34
Figure 4-5: Host Controller Communications Ar€a FOMMIEL.........cccevuerierierinenesereeee e 37
Figure 5-1: The OpenHCI HOSt CONMIOESoooriiiiieseeeeeeee e 42
FIQUrE 5-2: USB SCREAUIE.........oceeeiece ettt st et ne e ne e b e e e enee s 48
Figure 5-3: Removing an ENdpOint DESCIIPLON.........ciiiiiiiieeeeeeee e 59
Figure 5-4. Structure Of INtETUPL LISES.....coveiiecicciece ettt 64
Figure 5-5: Runtime Sructure Of INEEMUPL LISES........ooveiirerieeiieeeeeeesee s 65
Figure 5-6: An Empty Transfer DesCriptor QUEUE............coueeieiieeiie e sieerie et ste e e 71
Figure 5-7: Adding a Transfer Descriptor t0 @ QUEUE...........eiuererieieesie st 72
Figure 5-8: Host Controller Removes a Transfer Descriptor from a QuUEUEeceeevveeieceecvecie e 76
FIQUIE B-1: USB SHALES.....cueciecieeie ettt sttt et e sr e ae e e s b e et e eneesneesesneesreenneeneenes 91
Figure 6-2: Timing for SOF Token Generation 0N USB..........ccccoiiiiriiiieneneseseseeee e 9
Figure 6-3: Ligt Priority Within @USB Frame...........cccveiieiicecece ettt 95
Figure 6-4: Control Bulk SEVICE REI0O OF 4iLouiiiiiiciiiesieeeeeee e 97
FIQUrE 6-5: LISt SEIVICE FIOW ...ttt st st ne s 100
Figure 6-6: Endpoint DesCriptor SEVICE FlOWcouiiiiiriniieeeeese e 102
Figure 6-7: Transfer DesCriptor SEVICE FlOWcveoviiee e 104

Xiii

OpenHCI - Open Host Contraller Interface Specification for USB

Figure 7-1: HCREVISION REGISENocieceeece ettt e e te e sreene e nneenns 113
Figure 7-2: HCCONEI Ol REGISEN........ooiirieeiieeieeie ettt s sre e sneeneas 113
Figure 7-3: HCComMaNdSatuS REGISESocveieeiecee et e et 116
Figure 7-4: HCINter ruptXatuS REJISEN.......coviiieiieie ettt 118
Figure 7-5: HelnterruptENable REGISENoceeciieie e 120
Figure 7-6: HelnterruptDiSable REJISEN.........ooei it 121
FIQUrE 7-7: HCHCCA REJISENcoveeieceee et eee sttt e st te e s esse e e sneesneenseenennnaenes 122
Figure 7-8: HCPeriodCurrentED REJISEccoiiiiierierieeienee ettt s 122
Figure 7-9: HcControlHEAdED REQISENc.ccveivieiecee ettt e et 123
Figure 7-10: HcControl CurrentED REQISIEN.......cc.eeiiiiieiieieeeerieeie e 123
Figure 7-11: HCBUIKHEAAED REJISENc..ecvieeeeieie ettt s 124
Figure 7-12: HCBUIKCUI rentED REJISENooiiiiiieiierieeies ettt st 124
Figure 7-13: HCDONEHEAA REGISENc..eeveeeeceeciee ettt s nne s 125
Figure 7-14: HCFMINLErVal REJISENoiiiiiiieiieiie ettt sttt s 125
Figure 7-15: HCFMReMAINING REGJISEN.......ccovieeeeecie ettt s e e esneenes 126
Figure 7-16: HCFMNUMDEr REJISEN.......oiiiiieiieieie ettt s 127
Figure 7-17: HCPeriodiCart REGIFEN........cccvieeeieeie et te et e et e e eeneenes 127
Figure 7-18: HCLSTreshold REJISIENc..ooiiieeeie e 128
Figure 7-19: HCRNDESCIPLOr A REJITENccveceeeieeie e st eieeee st e e e e e teseesseese e e nneenes 129
Figure 7-20: HCRNDESCIIPLOr B REJISIENcoueiieeeiie ettt s 130
Figure 7-21: HCRNSIAtUS REJISENecueeiieceeceie ettt et e et e st tesneesneene e e nneenes 131
Figure 7-22: HCRNPOISIatUS REGISES........coeeiieiieie et s 133
Figure B-1: HCREVISION REGISES ..ottt sttt st 142

Xiv

OpenHCI - Open Host Contraller Interface Specification for USB

LIST OF TABLES

Table 4-1: Fidd Definitions for ENApOInt DESCIILONciverieeieeieiie e 18
Table 4-2: Feld DefinitionS for GENEral TD........cocviieiieie e sne s 21
Table 4-3: Fidd Definitions for ISOChIONOUS TD......ccueiiiiiiiiriesieieie e 28
Table 4-4: Example Cdculation of R and Host Controller ACHON.........cooererireneeeeeeeeseese e 29
Table 4-5: EXample Of TIME OVEITUN..........cceiieee ettt et st sreen e nnesreenns 33
Table 4-6: Fied Definitions for Packet STAUSWOId..........covevieieeieiecie e 34
Table4-7: COMPIEON COUES.......c.eceeirieieiee sttt te et s sre e e re e te e e e s reene e e e ereeneas 35
TADIE5-1: LIST _ENTRY ..ottt sttt bbbt et e bennenbenne s 49
Table5-2: HCD_ENDPOINT _DESCRIPTOR........cccoieiieeiiecee et see et stee e sreesteessee e sneesne e 51
Table5-3: HCD_TRANSFER _DESCRIPTOR.......c.ccoi ittt sae s snesnens 52
Table5-4: HCD_ENDPOINToooiii ettt st sae e s te e sae e re e sre e snseesaeesnneesneesnreens 53
Table 5-5: USBD_REQUESTccoioiiiieiieieiesie sttt st st e et be e snenneas 54
Table5-6: HCD ED LIST....ooeieeeeeeeeeeeeeeeeeeeee e seeseese s e e s s s s snees s sse s s snesnes 55
Table5-7: HCD_DEVICE DATA ...ttt st sttt sae b nne s 56
Table 7-1: Host Controller Operational REGIENS........c.cciviiieieeiice ettt 112
Table B-1: HCReviSION REGIEr FIEITS.cccoieeieciececece ettt 142
Table B-2: Legacy SUPPOIt REJISIEISccueiieieieierieste sttt 142
Table B-3: EMUIAEd REJIFIES......c.eecieece ettt et e sneenne e 143
Table B-4: HCEINPUL REJISIENS.ceiiiiieiiiieieeeee ettt 143
Table B-5: HCEOULPUL REJISENS........eeciieiecie ittt et be e sneenne e 143
Table B-6: HCESATUS REJITES ..ottt bbb 144
Table B-7: HCECONIOl REGITENcecvieieeee sttt et st e e e sneenneennens 145

OpenHCI - Open Host Contraller Interface Specification for USB

1. INTRODUCTION

The Open Host Controller Interface (OpenHCI) Specification for the Universal Serial Busisa
register-level description of aHost Controller for the Universal Serid Bus (USB) whichinturniis
described by the Universal Serial Bus Specification, soon to be released by Intel Corporation. The
purpose of OpenHCI isto accelerate the acceptance of USB in the marketplace by promoting the use
of acommon industry software/hardware interface. OpenHCI alows multiple Host Controller vendors
to design and sdl Host Controllers with a common software interface, freeing them from the burden of
writing and digtributing software drivers. The design goa has been to baance the conplexity of the
hardware and software so that OpenHCI is more than the smplest possible Host Controller for USB
yet not the most complex possible.

The target audience for this specification are hardware designers, system vendors, and software
designers. The reader should be familiar with the Universal Serial Bus Specification, Version 1.0,
which isincluded by reference. In the chapters that follow, the Host Controller is described from
various viewpoints, as aresult, some information is repested with the details of the current viewpoint
being highlighted and explained. It is hoped that this method of presentation will give the reader a
deeper and less ambiguous understanding of the specification.

Thefollowing descriptions summearize the organization of this spedification:
?? Chapter 2 provides a glossary of terms and abbreviations used within the specification.
?? Chapter 3 gives an overview of the architecture of the Host Controller.

?? Chapter 4 defines the data structures that reside in the host system memory and are used by the
Host Controller.

?? Chapter 5 describes how a software driver manages the Host Controller and its data structures.
?? Chapter 6 describes the Host Controller hardware.
?? Chapter 7 details the registers within the Host Controller that are visible to the software.

)

OpenHCI - Open Host Contraller Interface Specification for USB

2. TERMS AND ABBREVIATIONS

Bit Suffing Insertion of a“0” bit into adata stream to cause an electrical
trangition on the datawires dlowing a PLL to remain locked.

Buffer Storage used to compensate for a difference in data rates or time of
occurrence of events, when transmitting data from one device to
another.

Command A request made to aUniversal Serid Bus (USB) device.

CydicRedundancy A check performed on datato seeif an error has occurred in

Check (CRC) trangmitting, reading, or writing the data. Theresult of aCRC is
typicaly stored or tranamitted with the checked data. The stored
or transmitted result is compared to a CRC caculated for the
data to determine if an error has occurred.

Device A logicd or physicd entity that performs one or more functions. The
actual entity described depends on the context of the reference,
At the lowest leve, device may refer to asingle hardware
component, asin amemory device. At ahigher levd, it may refer
to a collection of hardware components that perform a particular
function, such asa Universa Serid Bus (USB) interface device.
At an even higher leve, device may refer to the function
performed by an entity attached to the USB; for example, a
datalFAX modem device. Devices may be physicd, eectricd,
addressable, and logical. When used as a nonspecific reference,
a USB deviceiseither ahub or afunction.

Device Address The address of a device on Universal Serid Bus (USB). The Device
Addressis the Default Address when the USB deviceisfirst
powered or reset. Hubs and functions are assigned a unique
Device Address by USB configuration software.

Driver When referring to hardware, an 1/0O pad that drives an externa |oad.
When referring to software, a program responsible for interfacing
to ahardware device; that is, a device driver.

ED See Endpoint Descriptor.

OpenHCI - Open Host Contraller Interface Specification for USB

End of Frame (EOF)

Endpoint Address

Endpoint Descriptor
(ED)

Endpoint Number
EOF

Frame

Function

Handshake Packet
HC

HCCA

HCD

HCDI

HCI

The end of aUSB defined frame. There are severd different stages
of EOF present in aframe.

The combination of a Device Address and an Endpoint Number on a
Universd Seria Bus device,

A memory gructure which describes information necessary for the
Host Controller to communicate (via Transfer Descriptors) with a
device Endpoint. An Endpoint Descriptor includes a Transfer
Descriptor pointer.

A unique pipe endpoint on aUniversal Serid Bus device.

See End of Frame,

A frame begins with a Start of Frame (SOF) token andis 1.0 ms
?20.25% in length.

A Universd Serid Bus device tha provides a capability to the host.
For example, an ISDN connection, a digital microphone, or
speakers.

Packet which acknowledges or rejects a specific condition.

See Host Controller.

See Host Controller Communication Area

See Host Controller Driver.

See Host Controller Driver Interface.

See Host Controller Interface.

Host Controller (HC) Hardware device which interfaces to the Host Controller Driver

(HCD) and the Universa Serid Bus (USB). The interface to the
HCD is defined by the OpenHCI Host Controller Interface. The
Host Controller processes data lists constructed by the HCD for
data transmission over the USB. The Host Controller contains
the Root Hub as wll.

OpenHCI - Open Host Contraller Interface Specification for USB

Host Controller
Communication Area
(HCCA)

Host Controller
Driver (HCD)

Host Controller
Driver Interface
(HCDI)

Host Controller
Interface (HCI)

Hub

Interrupt Request
(IRQ)

IRQ

Isochronous Data
LS

LSB

MSb

MSB

OpenHCI

Packet

A gructure in shared main memory established by the Host
Controller Driver (HCD). This dructureis used for
communication between the HCD and the Host Controller. The
HCD maintains a pointer to this structure in the Host Controller.

Software driver which interfaces to the Universa Serid Bus Driver
and the Host Controller. The interface to the Host Controller is
defined by the OpenHCI Host Controller Interface.

Software interface between the Universal Serid Bus Driver and the
Host Controller Driver.

Interface between the Host Controller Driver and the Host
Controller.

A Universd Serid Bus device that provides additional connectionsto
the Universal Serid Bus.

A hardware signal that alows a device to request atention from a
hogt. The hogt typically invokes an interrupt service routine to
handle the condition which caused the request.

See Interrupt Request.

A continuous stream of data delivered at a steady rate.

Least Sgnificant Bit.

Least Sgnificant Byte,

Mog Significant Bit.

Mogt Significant Byte.

The Open Hogt Controller Interface definition. Thisinterface
describes the requirements for a Host Controller and aHost

Controller driver for the operation of a Universal Serid Bus.

A bundle of data organized for transmisson.

OpenHCI - Open Host Contraller Interface Specification for USB

Peripherd
Component
Interconnect (PCI)
Phase

Palling

Polling Interva

Power-On Reset
(POR)

Queue
Root Hub

Start of Frame
(SOF)

D

Time-out

Transfer Descriptor

(TD)

Universd Sarid Bus

(USB)

A 32- or 64-hit, processor-independent, expansion bus used on
persona computers.
A token, data, or handshake packet; a transaction has three phases.

Asking multiple devices, one & atime, if they have any datato
tranamit.

The period between consecutive requests for datainput to a
Universa Serid Bus Endpoint.

See Power-On Reset.

Point of accessto or from asystem or circuit. For Universal Serid
Bus, the point where aUniversa Serid Bus deviceis attached.

Restoring a storage device, register or memory to a predetermined
state when power is applied.

A linked ligt of Transfer Descriptors.
A Universa Serid Bus hub attached directly to the Host Controller.

Start of Frame (SOF). The beginning of a USB-defined frame. The
SOF isthe fird transaction in each frame. SOF allows endpoints
to identify the start of frame and synchronize interna endpoint
clocksto the host.

See Transfer Descriptor.

The detection of alack of bus activity for some predetermined
interval.

A memory gructure which describes information necessary for the
Host Controller to transfer ablock of datato or from adevice
Endpoint.

A collection of Universa Serid Bus devicesincuding the software
and hardware that alow connections between functions and the
host.

OpenHCI - Open Host Contraller Interface Specification for USB

3. ARCHITECTURAL OVERVIEW

3.1 Introduction

Figure 3-1 shows four main focus areas of aUniversal Seria Bus (USB) system. These areas are the
Client Software/lUSB Driver, Host Controller Driver (HCD), Host Controller (HC), and USB Device.
The Client Software/lUSB Device and Host Controller Driver are implemented in software. The Host
Controller and USB Device are implemented in hardware. OpenHCI specifies the interface between the
Host Controller Driver and the Host Controller and the fundamental operation of each.

p
Client Software
USB Driver
"
Software
' N\ ~
Host Controller Driver
. 7
> Scope of
OpenHCI
Host Controller
v
Hardware
USB Device

Figure3-1: USB FocusAreas

The Host Controller Driver and Host Controller work in tandem to transfer data between client
software and aUSB device. Datais trandated from shared-memory data structures at the client
software end to USB signd protocols at the USB device end, and vice-versa.

OpenHCI - Open Host Contraller Interface Specification for USB

3.2 Data Transfer Types

There are four datatransfer types defined in USB. Each type is optimized to match the service
requirements between the client software and the USB device. The four types are:

?? Interrupt Transfers - Small data transfers used to communicate information from the USB device to
the client software. The Host Controller Driver pollsthe USB device by issuing tokensto the
device at aperiodic interva sufficient for the requirements of the device.

?7? lsochronous Transfers - Periodic data transfers with a constant datarate. Datatransfers are
correlated in time between the sender and receiver.

?? Control Transfers - Nonperiodic data transfers used to communicate configuration/commeand/status
type information between client software and the USB device.

?? Bulk Trandfers - Nonperiodic data transfers used to communicate large amounts of information
between client software and the USB device.

In OpenHCI the data transfer types are classified into two categories. periodic and nonperiodic.
Periodic transfers are interrupt and isochronous since they are scheduled to run at periodic intervals.
Nonperiodic transfers are control and bulk since they are not scheduled to run a any specific time, but
rather on atime-available bass.

3.3 Host Controller Interface

3.3.1 Communication Channels

There are two communication channels between the Host Controller and the Host Controller Driver.
The first channel uses a set of operationd registers located on the HC. The Host Controller is the target
for dl communication on this channd. The operationa registers contain control, status, and list pointer
registers. Within the operational register set is a pointer to alocation in shared memory named the Host
Controller Communications Area (HCCA). The HCCA isthe second communication channel. The
Host Controller is the magter for al communication on this channd. The HCCA contains the head
pointers to the interrupt Endpoint Descriptor lists, the head pointer to the done queue, and status
information associated with start-of-frame processing.

OpenHCI - Open Host Contraller Interface Specification for USB

OpenHCI
Operational | Host Controller
Registers | Commications Area
Mode | Interrupt O
HccA F————®] Interupt 1
Status Interrupt 2
Event
Frame Int Interrupt 31
Ratio
Control

Done [i e ¥ ¥ B

Device Register
in memory space

Figure 3-2: Communication Channds

3.3.2 Data Structures

The basic building blocks for communication across the interface are the Endpoint Descriptor (ED) and
Transfer Descriptor (TD).

The Hogt Controller Driver assigns an Endpoint Descriptor to each endpoint in the sysem. The
Endpoint Descriptor contains the information necessary for the Host Controller to communicate with the
endpoint. The fields include the maximum packet Size, the endpoint address, the speed of the endpoint,
and the direction of dataflow. Endpoint Decriptorsare linked in alig.

A queue of Transfer Descriptorsis linked to the Endpoint Descriptor for the specific endpoint. The
Transfer Descriptor contains the information necessary to describe the data packets to be transferred.
The fidds include data toggle information, shared memory buffer location, and completion Satus codes.
Each Transfer Descriptor contains information that describes one or more data packets. The data
buffer for each Transfer Descriptor rangesin size from 0 to 8192

OpenHCI - Open Host Contraller Interface Specification for USB

bytes with a maximum of one physca page crossng. Transfer Descriptors are linked in aqueue: the first
one queued isthe first one processed.

OpenHCI - Open Host Contraller Interface Specification for USB

Each data trandfer type hasits own linked list of Endpoint Descriptors to be processed. Figure 3-3,
Typica Ligt Structure, is arepresentation of the data structure relationships.

read P |——(ED)—(ED) (D)D)

TD TD TD TD

v v
TD TD

Figure 3-3: Typical List Structure

The head pointers to the bulk and control Endpoint Descriptor lists are maintained within the operationd
regisersinthe HC. The Host Cortroller Driver initidizes these pointers prior to the Host Controller
ganing access to them. Should these pointers need to be updated, the Host Controller Driver may need
to halt the Host Controller from processing the specific list, update the pointer, then re-enable the HC.

The head pointers to the interrupt Endpoint Descriptor lists are maintained within the HCCA. Thereis
no separate head pointer for isochronous transfers. The first isochronous Endpoint Descriptor smply
linksto the lagt interrupt Endpoint Descriptor. There are 32 interrupt head pointers. The head pointer
used for a particular frame is determined by using the last 5 bits of the Frame Counter as an offset into
the interrupt array within the HCCA.

10

OpenHCI - Open Host Contraller Interface Specification for USB

The interrupt Endpoint Descriptors are organized into a tree structure with the head pointers being the
leaf nodes. The desired palling rate of an Interrupt Endpoint is achieved by scheduling the Endpoint
Descriptor at the gppropriate depth in the tree. The higher the polling rate, the closer to the root of the
tree the Endpoint Descriptor will be placed snce multiple lists will converge onit. Figure 3-4 illustrates
the structure for Interrupt Endpoints. The Interrupt Endpoint Descriptor Placeholder indicates where
zero or more Endpoint Descriptors may be enqueued. The numbers on the left are the index into the
HCCA interrupt head pointer array.

0 @y
16 —.:-\>-\
8 —.:./
24 @@ >\
4 |l o)
20 —.‘>-/
12 —.'
28 @@
2 @
18 —-‘;.\
10 —.'
26 @@ >/
Interrupt 6 &,
Head itzl ‘-“>-/
Pointers &
30 —."
1 @
17 —.‘;.\
9 —.'
25 @1 >\
5 @y
21 —.‘)/
13 —.:-/
29 @1
3 =
19 ">\
11 —.'
27 @1 >/
7 @
23 —.:-‘y
15 —.'
31 @1
32 16 8 4

Figure3-4: Interrupt ED Structure

Endpoint Poll Interval (ms)

2

Interrupt
Endpoint
Descriptor
Placeholder

11

OpenHCI - Open Host Contraller Interface Specification for USB

Figure 3-5 isasample Interrupt Endpoint schedule. The schedule shows two Endpoint Descriptors a a
1-ms poll interva, two Endpoint Descriptors a a 2-ms pall interva, one Endpoint at a4-ms pall
interval, two Endpoint Descriptors at an-8 ms poll interva, two Endpoint Descriptors a a 16-ms pall
interva, and two Endpoint Descriptors at a 32-ms poll interval. Note that in this example unused
Interrupt Endpoint Placeholders are bypassed and the link is connected to the next available Endpoint in
the hierarchy.

—&
16 —\\
8 '\\\
24 -\\\ .
4 \\
e
20 _\\\\ Interrupt
12 /;‘}.\\ Endpoint
28 Descriptor
2
18 =T
10 —\\\
26 —~\>‘/
6 l——]
Interrupt 2 |1
Head 14 _/7/
Pointers 30 |
1 e
17 AN
™
9
25 Qis
5 —\\\
21 —\\\\
13 =P
29
3i~J o
19 T
11 —/;7
27 1 /
7 —//%
23 17
15 -1
31]
T
32 16 8 4 2 1

Endpoint Poll Interval (ms)

Figure 3-5: Sample Interrupt Endpoint Schedule

12

OpenHCI - Open Host Contraller Interface Specification for USB

3.4 Host Controller Driver Responsibilities
This section summarizes the Host Controller Driver (HCD) responghbilities.

3.4.1 Host Controller Management

The Host Controller Driver manages the operation of the Host Controller (HC). It doesso by
communicating directly to the operationd registersin the Host Controller and establishing the interrupt
Endpoint Descriptor list head pointersin the HCCA.

The Host Controller Driver maintains the state of the HC, list processing pointers, list processing
enables, and interrupt enables.

3.4.2 Bandwidth Allocation

All accessto the USB is scheduled by the Host Controller Driver. The Host Controller Driver dlocates
aportion of the available bandwidth to each periodic endpoint. If sufficient bandwidth is not available, a
newly-connected periodic endpoint will be denied access to the bus.

A portion of the bandwidth is reserved for nonperiodic transfers. This ensures that some amount of
bulk and control transfers will occur in each frame period. The frame period is defined for USB to be
1.0ms.

The bandwidth alocation policy for OpenHCI is shown in Figure 3-6. Each frame begins with the Host
Controller sending the Start of Frame (SOF) synchronization packet to the USB bus. Thisisfollowed
by the Host Controller servicing nonperiodic transfers until the frame interva counter reaches the vaue
set by the Host Controller Driver, indicating thet the Host Controller should begin servicing periodic
transfers. After the periodic transfers complete, any remaining time in the frame is consumed by
servicing nonperiodic transfers once more,

|< 1.0ms =|
[soF| NP Periodic NP |
—

Time

Figure 3-6: Frame Bandwidth Allocation

13

OpenHCI - Open Host Contraller Interface Specification for USB

3.4.3 List Management

The trangport mechanism for USB data packets is via Transfer Descriptor queues linked to Endpoint
Descriptor lists. The Host Controller Driver creates these data structures then passes control to the
Host Controller for processing.

The Hogt Controller Driver is responsgble for enqueuing and dequeuing Endpoint Descriptors.
Enqueuing is done by adding the Endpoint Descriptor to the tail of the gppropriate list. This may occur
gmultaneoudy with the Host Controller processing the list without requiring any lock mechanism.
Before dequeuing an Endpoint Descriptor, the Host Controller Driver may disable the Host Controller
from processing the entire Endpoint Descriptor list of the data type being removed to ensure that the
Host Controller is not ng the Endpoint Descriptor.

The Host Controller Driver is dso respongble for enqueuing Transfer Descriptors to the appropriate
Endpoint Descriptor. Enqueuing is done by adding the Transfer Descriptor to the tail of the appropriate
queue. This may occur Smultaneoudy to the Host Controller processing the queue without requiring
any lock mechanism. Under norma operation, the Host Controller dequeues the Transfer Descriptor.
However, the Host Controller Driver dequeues the Transfer Descriptor when the Transfer Descriptor is
being canceled due to arequest from the client software or certain error conditions. In thisingtance, the
Endpoint Descriptor is disabled prior to the Transfer Descriptor being dequeued.

3.4.4 Root Hub

The Root Hub isintegrated into the HC. Theinternal registers of the Root Hub are exposed to the Host
Controller Driver which is responsble for providing the proper hub-class protocol with the USB Driver
and proper control of the Root Hub.

3.5 Host Controller Responsibilities
This section summarizes the Host Controller (HC) responsihilities.

3.5.1 USB States

There are four USB states defined in OpenHCI: UsbOperational, UsbReset, UsbSuspend, and
UsbResume The Host Controller puts the USB bus in the proper operating mode for each state.

14

OpenHCI - Open Host Contraller Interface Specification for USB

3.5.2 Frame management

The Host Controller keeps track of the current frame counter and the frame period. At the beginning of
each frame, the Host Controller generates the Start of Frame (SOF) packet on the USB bus and
updates the frame count value in syssem memory. The Host Controller also determinesif enough time
remainsin the frame to send the next data packet.

3.5.3 List Processing

The Host Controller operates on the Endpoint Descriptors and Transfer Descriptors enqueued by the
Host Controller Driver.

For interrupt and isochronous transfers, the Host Controller begins at the Interrupt Endpoint Descriptor
head pointer for the current frame. Theligt is traversed sequentidly until one packet transfer from the
first Transfer Descriptor of dl interrupt and isochronous Endpoint Descriptors scheduled in the current
frameis attempted.

For bulk and control transfers, the Host Controller begins in the respective list where it last |€ft oOff.
When the Host Controller reaches the end of alig, it loads the vaue from the head pointer and
continues processing. The Host Controller processes n control transfersto 1 bulk transfer where the
vauedf nisset by the Host Controller Driver.

When a Transfer Descriptor completes, either successfully or due to an error condition, the Host
Controller moves it to the Done Queue. Enqueuing on the Done Queue occurs by placing the most
recently completed Transfer Descriptor at the head of the queue. The Done Queueis transferred
periodically from the Host Controller to the Host Controller Driver viathe HCCA.

15

OpenHCI - Open Host Contraller Interface Specification for USB

4. DATA STRUCTURES
4.1 Overview

USB does not provide a mechanism for attached devices to arbitrate for use of the bus. Asa
consequence, arbitration for use of the interface is * predictive’ with the Host Controller (HC) and Host
Controller Driver (HCD) software assigned the responsibility of providing service to deviceswhen it is
predicted that adevice will need it. USB by necessity supports anumber of different communications
models between software and Endpoints (Bulk, Contral, Interrupt, and 1sochronous). Usage of the bus
varies widely among these service classes, making the task of the host fairly chalenging. The approach
used by OpenHCI isto have two levels of arbitration to select among the endpoints. Thefirst level of
arbitration is a the list level. Each endpoint type needing service isin alist of a corresponding type
(e.g., Isochronous Endpoints are in the isochronous list) and the Host Controller selects which ligt to
service. Within aligt, endpoints are given equd priority ensuring that al endpoints of a certain type have
more-or-less equa service opportunities.

Theligt priorities are modified at periodic intervas as endpoints are serviced. In each frame, an interva
of timeis reserved for processing itemsin the control and bulk ligts. Thisinterval is a the beginning of
each frame. The Hogt Controller Driver limitsthistime by setting HcPeriodicSart with abittimeina
frame after which periodic transfers (interrupt and isochronous) have priority for use of the bus. During
periodic list processing, the interrupt list specific to the current frame is serviced before the isochronous
lis. When processing of the periodic listsis complete, processing of the control and bulk lists can
resume.

An Endpoint Descriptor (ED) contains information about an endpoint that is used by the Host Controller
to manage access to the endpoint. The endpoint’s address, transfer speed, and maximum data packet
gze aetypicd parameterswhich are kept inthe ED. Additionaly, the ED is used as an anchor for a
queue of Transfer Descriptors. A Transfer Descriptor (TD) is attached to an ED define amemory
buffer to/from which dataisto be transferred for the endpoint. \When the Host Controller accesses an
ED and findsavaid TD address, the Host Controller completes a single transaction with the endpoint
identified in the ED from/to the memory address indicated by the TD.

When dl of the data defined by a TD has been transferred, the TD is unlinked from its ED and linked to
the done queue. The Host Controller Driver then processes the done queue and provides completion
information to the software that originated the transfer request.

16

OpenHCI - Open Host Contraller Interface Specification for USB

Detalls of the memory data structures that are processed by the Host Controller in support of the
mechanisms described above are provided in the remainder of this chapter. Since the structures defined
aredl in system memory, the Host Controller Driver has full read-write accessto al portions of the
gructures. Thefiddsin the structures that are modified by the Host Controller are noted in the field
descriptions. Fieldsthat are indicated as being written by the Host Controller may not be modified by
system software when the structure containing thet fidldison a

queue or list that is being processed by the HC. No hardware interlocks are used to provide exclusion.

4.2 Endpoint Descriptor

An Endpoint Descriptor (ED) is a 16-byte, memory resident structure thet must be digned to a 16-byte
boundary. The Host Controller traverseslists of EDs and if there are TDs linked to an ED, the Host
Controller performstheindicated transfer.

4.2.1 Endpoint Descriptor Format

3 2 1]afa]a]1 12 oooooo‘o‘o

1 6 6|5/4(3[2 1]0 7|16 5 4(3 210
Dword 0 — MPS FIK|S| D EN FA
Dword 1 TD Queue Tail Pointer (TailP) —
Dword 2 TD Queue Head Pointer (HeadP) 0 |c|H
Dword 3 Next Endpoint Descriptor (NextED) —

Figure 4-1. Endpoint Descriptor

Notes:

1. Fddscontaning ‘— are not interpreted or modified by the Host Controller and are available for
use by the Host Controller Driver for any purpose.

2. Fddscontaining ‘O must be written to 0 by the Host Controller Driver before queued for Host
Controller processing. If Host Controller has write access to the fidd, it will aways write the field
to 0.

17

OpenHCI - Open Host Contraller Interface Specification for USB

4.2.2 Endpoint Descriptor Field Definitions

Table 4-1: Field Definitionsfor Endpoint Descriptor

HC
Name Access Description
FA R FunctionAddress
This is the USB address of the function containing the endpoint that this ED
controls
EN R EndpointNumber
This is the USB address of the endpoint within the function
D R Direction
This 2-bit field indicates the direction of data flow (IN or OUT.) If neither IN nor OUT
is specified, then the direction is determined from the PID field of the TD. The
encoding of the bits of this field are:
Code Nirectinn
NNh (et directinon Erom TH
01b ouT
10b IN
11b Get direction From TD
S R Speed
Indicates the speed of the endpoint: full-speed (S = 0) or low-speed (S = 1.)
K R sKip
When this bit is set, the HC continues on to the next ED on the list without
attempting access to the TD queue or issuing any USB token for the endpoint
F R Format
This bit indicates the format of the TDs linked to this ED. If this is a Control, Bulk,
or Interrupt Endpoint, then F = 0, indicating that the General TD format is used. If
this is an Isochronous Endpoint, then F = 1, indicating that the Isochronous TD
format is used.
MPS R MaximumPacketSize
This field indicates the maximum number of bytes that can be sent to or received
from the endpoint in a single data packet
TailP R TDQueueTailPointer
If TailP and HeadP are the same, then the list contains no TD that the HC can
process. If TailP and HeadP are different, then the list contains a TD to be
processed.
H R/W Halted
This bit is set by the HC to indicate that processing of the TD queue on the
endpoint is halted, usually due to an error in processing a TD.
C R/W toggleCarry
This bit is the data toggle carry bit. Whenever a TD is retired, this bit is written to
contain the last data toggle value (LSb of data Toggle field) from the retired TD.
This field is not used for Isochronous Endpoints
HeadP R/W TDQueueHeadPointer
Points to the next TD to be processed for this endpoint.
NextED R NextED
If nonzero, then this entry points to the next ED on the list

18

OpenHCI - Open Host Contraller Interface Specification for USB

4.2.3 Endpoint Descriptor Description

Endpoint Descriptors (ED) are linked in lists that are processed by the HC. An ED islinked to a next
ED when the NextED fidld is nonzero.

When the Host Controller accesses an ED, it checks the sKip and the Halted bits to determine if any
further processing of the ED isdlowed. If ether bit is set, then the Host Controller advancesto the next
ED onthelig. If nather the SKip nor the Halted bit is s, then the Host Controller compares HeadP
to TallP. If they are not the same, then the TD pointed to by HeadP defines a buffer to/from which the
Host Controller will transfer a data packet.

This linking convention assumes that the Host Controller Driver queuesto the ‘tall’ of the TD queue. It
doesthisby linking anew TD to the TD pointed to by TailP and then updating TailP to point to the TD
just added.

When processing of aTD is complete, the Host Controller ‘retires the TD by unlinking it from the ED
and linking it to the Done Queue. When aTD isunlinked, NextTD of the TD is copied to HeadP of
the ED.

The sKip bit is set and cleared by the Host Controller Driver when it wants the Host Controller to skip
processing of the endpoint. This may be necessary when the Host Controller Driver must modify the
vaue of HeadP and the overhead of removing the ED from itsligt is prohibitive.

TheHalted bit is set by the Host Controller when it encounters an error in processnga TD. When the
TD in error is moved to the Done Queue, the Host Controller updates HeadP and sets the Halted bit,
causing the Host Controller to skip the ED until Halted is cleared. The Host Controller Driver clears
the Halted bit when the error condition has been corrected and transfers to/from the endpoint should
resume. The Host Controller Driver should not write to HeadP/toggleCarry/Halted unlessHalted is
set, Kip isst, or the ED has been removed from the list.

When TDs are queued to an ED, the Host Controller processes the TDs asynchronoudy with respect to
processing by the host processor. Therefore, if the Host Controller Driver needs to dter the TD queue
other than appending to the queue, it must stop the Host Controller from processing the TD queue for
the endpoint so that changes can be made. The nomina mechanisms for siopping TD processing are for
the Host Controller Driver to remove the ED from thelist or to set the SKip bit in the ED.

When the D fidd of an ED is 10b (IN), the Host Controller may issue an IN token to the specified
endpoint after it determines that HeadP and TailP are not the same. Thisindicates that a buffer exists
for the data and that input of the endpoint datamay occur in pardld with the HC' s access of the TD
which defines the memory buffer.

19

OpenHCI - Open Host Contraller Interface Specification for USB

Since an ED must be aigned to a 16-byte boundary, the Host Controller only uses the upper 28 hits of
Dword3 as apointer to the next ED. TailP and HeadP point to TDswhich may be either 16- or 32-
byte aligned. The Host Controller uses only the upper 28 bits of Dword1 and Dword2 to point to a
16-bytedigned TD (F=0). If HeadP and TailP point to a TD that must be 32-byte aligned (F = 1),
then bit 4 of these Dwords must be O.

4.3 Transfer Descriptors

A Transfer Descriptor (TD) is a system memory data structure that is used by the Host Controller to
define abuffer of data that will be moved to or from an endpoint. TDs come in two types. generd and
isochronous. The Generd TD is used for Interrupt, Control, and Bulk Endpoints and an Isochronous
TD isused to ded with the unique requirements of isochronous transfers. Two TD types are supported
because the nature of isochronous transfers does not lend itsdlf to the sandard DMA buffer format and
the packetizing of the buffer required for isochronous transfersis too redtrictive for generd transfer
types.

Both the Generd TD and the Isochronous TD provide ameans of specifying a buffer that isfrom 0 to
8,192 byteslong. Additionally, the data buffer described in asingle TD can span up to two physicaly
digoint pages. Although the scatter/gather capabilities of asingle TD are limited, it eiminates most of
the problems associated with forcing buffers to be physicaly contiguous including the possibility of
superfluous data movements.

Transfer Descriptors are linked to queues attached to EDs. The ED provides the endpoint address
to/from which the TD dataiis to be transferred. The Host Controller Driver adds to the queue and the
Host Controller removes from the queue. When the Host Controller removes a TD from a queue, it
linksthe TD to the Done Queue. When aTD isunlinked from the ED and linked to the Done Queue, it
issaid to be‘retired’. A TD may be retired due to normal completion or because of an error condition.
When the TD isretired, a condition code value iswritten in the TD which alows the Host Controller
Driver to determine the reason it was retired.

Details of TD processing are dependent on the type of TD and are discussed in Sections 4.3.1 through
4.3.3.1.

4.3.1 General Transfer Descriptor

Trandfersfor control, bulk, and interrupt dl use the same format for their Transfer Descriptor (TD).
This Generd TD isa 16-byte, host memory structure that must be digned to a 16-byte boundary.

20

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.1.1 General Transfer Descriptor Format

Note:

Dword 0
Dword 1
Dword 2
Dword 3

3 22 2]2 2|2 2|2 1]1 Io 0
1 8|7 6[5 4/3 1|0 9|8 3 0
cc |ec|[1] b |[prP|R] —
Current Buffer Pointer (CBP)
Next TD (NextTD) [o
Buffer End (BE)

Figure4-2: General TD Format

In DwordO, there are fields that are read/write by the HC. The unused portion of this Dword
(indicated by ‘—") must ether not be written by Host Controller or must be read, and then

written back unmodified. The Host Controller Driver should not modify any portion of the TD

whileit is accessble to the HC.

4.3.1.2 General Transfer Descriptor Field Definitions

Table 4-2: Fidd Definitionsfor General TD

HC
Name Access Description
R R bufferRounding
If this bit is 0, then the last data packet to a TD from an endpoint must
exactly fill the defined data buffer. If the bit is 1, then the last data packet
may be smaller than the defined buffer without causing an error condition on
the TD.
DP R Direction/PID
This 2-bit field indicates the direction of data flow and the PID to be used for
the token. This field is only relevant to the HC if the D field in the ED was
set to 00b or 11b indicating that the PID determination is deferred to the
TD. The encoding of the bits within the byte for this field are:
PID Nata
Code | Type Direction
NNh QFTIIP tn endnnint
01b ouT to endpoint
10b IN from endpoint
11b Reserved
DI R DelayInterrupt
This field contains the interrupt delay count for this TD. When a TD is
complete the HC may wait for DelayInterrupt frames before generating an
interrupt. If DelayInterrupt is 111b, then there is no interrupt associated
with completion of this TD.

21

OpenHCI - Open Host Contraller Interface Specification for USB

Table 4-2: Fidd Definitionsfor General TD

HC
Name Access Description
T R/W DataToggle

This 2-bit field is used to generate/compare the data PID value (DATAO or
DATAL). Itis updated after each successful transmission/reception of a
data packet. The MSb of this field is ‘0’ when the data toggle value is
acquired from the toggleCarry field in the ED and ‘1’ when the data toggle
value is taken from the LSb of this field.

EC R/W ErrorCount

For each transmission error, this value is incremented. If ErrorCount is 2
and another error occurs, the error type is recorded in the ConditionCode
field and placed on the done queue. When a transaction completes without
error, ErrorCount is reset to 0.

CcC R/W ConditionCode
This field contains the status of the last attempted transaction. (See
Section 0.)

CBP R/W CurrentBufferPointer

Contains the physical address of the next memory location that will be
accessed for transfer to/from the endpoint. A value of 0 indicates a zero-
length data packet or that all bytes have been transferred.

NextTD R/W NextTD

This entry points to the next TD on the list of TDs linked to this endpoint
BE R BufferEnd

Contains physical address of the last byte in the buffer for this TD

4.3.1.3 General Transfer Descriptor Description

4.3.1.3.1 Buffer Address Determination

The CurrentBuffer Pointer vaue in the Genera TD is the address of the data buffer that will be used
for a data packet transfer to/from the endpoint addressed by the ED. When the transfer is completed

without an error of any kind, the Host Controller advances the value of CurrentBuffer Pointer by the
number of bytes transferred

If during the data transfer the buffer address contained in the HC' s working copy of

CurrentBuffer Pointer crosses a 4K boundary, the upper 20 bits of Buffer End are copied to the
working value of CurrentBuffer Pointer causing the next buffer address to be the Oth byte in the same
4K page that contains the last byte of the buffer (the 4K boundary crossing may occur within a data
packet transfer.)

4.3.1.3.2 Packet Size

For writes from the Host Controller to an endpoint (OUT and SETUP), the size of the data packet that
is sent to an endpoint is dwaysthe smdler of MaximumPacketSize and the remaining datain the
buffer. For reads from the endpoint to the Host Controller (IN), the size of the data packet is
determined by the endpoint.

22

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.1.3.3 Condition Codes

The ConditionCode field of a Generd TD is updated after every attempted transaction, whether
successful or not. If the transaction was successful, then the ConditionCode fidd is set to NOERROR.
Otherwise, it is set according to the error type.

4.3.1.3.4 Seguence Bits

The USB protocol uses data PID sequencing to ensure that data packets are received in the correct
order. The sequencing requires that the data transmitter continue to send the same data packet with the
same data PID (either DATAO or DATAZ1) until it has determined that the data packet has been
successfully received and accepted. Reception and acceptance are indicated when the transmitter
receives an ACK handshake after sending a data packet. In order to ensure that data packets are not
logt, the Host Controller and the endpoint must start and stay in data toggle synchronization.

Data toggle synchronization is first established a endpoint initidization with the nomina vaue for the first
packet to/from an endpoint usng DATAO. On each successive successful packet
transmission/reception, the data toggle changes.

The datatoggle is maintained within a Generd TD smply by dternating the L Sb of the dataT oggle
field. When the data toggle vaue must be carried between two Generd TDs, the toggleCarry hitin
the ED is used to propagate the correct vaue to the next Genera TD.

When the M Sb of the dataT oggle fied is O, that means that the value of the data toggle is obtained
from thetoggleCarry bitin the ED and the LSb of the dataT oggle field isignored. When the MSb of
the dataT oggle field is 1, then the L Sb of the dataT oggle fidd contains the value that isto be used for
the data toggle.

For bulk and interrupt endpoints, most General TDs are queued with dataT oggle = 00b. Thisdlows
the data toggle to be carried across multiple TDs with the ED containing the value to be used for the first
data packet in each transfer. After the first data packet is successfully transferred, the M Sb of
dataToggle is st to indicate that, for the remainder of the trandfer, the dataT oggle field will determine
the data toggle and the L Sb will be set to indicate the next toggle value. When the Generd TD isretired
and HeadP in the ED is updated, the toggleCarry bit in the ED is written to indicate the data toggle
vaue that will be used on the next packet for the endpoint.

23

OpenHCI - Open Host Contraller Interface Specification for USB

For control endpoints, the convention is that the Setup packet will dways use adata PID of DATAOQ,
the first data packet will use adata PID of DATAL, and the Status packet will use adata PID of
DATAL. Sincethis sequence does not rely on any previous data toggle history, the Setup, data, and
status packets should be queued with the MSb of the dataT oggle field = 1 and the LSb of each TD st
appropriately (Setup = 0; Status = 1; and first data, if any, = 1.) Although the Host Controller updates
thetoggleCarry hit in the ED whenever aGenerd TD isretired, the data toggle is determined solely by
the Generd TD.

The datatoggle field of a Generd TD is advanced after every successful data packet transaction with
the endpoint, including the last. Aslong asan ACK issent (IN) or received (OUT or Setup), the data
toggle will advance, even if other error conditions are encountered.

4.3.1.3.5 Transfer Completion

A trandfer is completed when the Host Controller successfully transfers, to or from an endpoint, the
byte pointed to by Buffer End. Upon successful completion, the Host Controller sets
CurrentBuffer Pointer to zero, sets ConditionCode to NOERROR, and retires the Generd TD to the
Done Queue.

The trandfer may aso complete when a data packet from an endpoint does not fill the buffer and isless
than Maximum Packet Size bytesin length. Inthis case, CurrentBuffer Pointer is updated to point to
the memory byte immediatdly after the last byte written to memory. Then, if the buffer Rounding hit in
the Generd TD is &, then this condition is treated as anorma completion and the Host Controller sets
the ConditionCode fied to NOERROR and retires the Generd TD to the Done Queue. If the

buffer Rounding bit in the Generd TD is not s, then this condition is treated as an error and the Host
Controller sets the ConditionCode fidd to DATA UNDERRUN and the Halted bit of the ED is set asthe
Generd TD isretired.

4.3.1.3.6 Transfer Errors

There are saverd types of transfer errors that must be handled by the HC. They fall into the following
categories:.

?7? transmission

?? sequence

?? sysem

Transmisson erors are errors that occur in communicating information over the USB wires and
manifest themselves as CRC errors, BITSTUFFING errors, DEVICENOTRESPONDING erors. Sequence
errors occur when the number of data bytes received does not match the number of bytes expected
from an endpoint. System errors occur when the Host Controller has a problem resulting from the
HC' s system environment that cannot otherwise be attributed to USB.

24

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.1.3.6.1 Transmission Errors

For errorsin this category, USB defines a policy that alows the transaction to be retried for up to three
times before the transfer is failed and returned to the client. The Host Controller supports this policy
with the ErrorCount fidd. Thisfiddisinitidized to 0 by the Host Controller Driver when the Generd
TD isqueued. Thisfidd isupdated after each transaction attempt. If thereis no transmission error, the
fiddiswrittento O. If, however, thereisatranamisson error, the field isincremented. If the
ErrorCount field reaches 2 (10b) and another transmission error occurs (the third error in arow), the
TD isretired to the Done Queue and the endpoint is halted.

Data toggle mismatches on input data are counted as transmission errors. The cause of a datatoggle
mismatch is ether failure of the endpoint to receive an ACK or abroken device. Data received when
the data toggle mismatches is discarded and never written to host memory.

An eror inthe PID check fidld is counted as atranamission error and is reported with a
ConditionCode of PIDCHECKFAILURE.

4.3.1.3.6.2 Sequence Errors

Sequence errors occur only on reads from an endpoint to the Host Controller (IN). Sequence errors
are not checked unless the data packet is received without a transmission error. There are two types of
sequence errors: data overrun and data underrun. When either of these error conditions is encountered,
the ConditionCode fidld is set accordingly, the Generd TD isretired, and the endpoint is halted.

A data overrun error occurs when the number of bytes received from an endpoint exceeds either
Maximum Packet Size or the number of bytes remaining in a Generd TD’s buffer. In the case of an
overrun condition, the Host Controller writes to memory dl of the data received up to the point where
the data overrun condition was created. When the Generd TD isretired, CurrentBuffer Pointer
points to the start of the data packet in error; however, dl of the data bytes are valid and the data toggle
will have advanced.

The second type of sequence error, data underrun, occurs when the number of data bytes received
from an endpoint isless than dlowed. Even though a Generd TD is dways retired when the number of
bytes received from an endpoint is less than Maximum Packet Size, it does not aways create an error
condition. If the amount of recelved datafills the buffer exactly (last byte of a data packet written to
Buffer End), then anorma completion condition exists regardless of the size of the data packet. The
Generd TD isretired with a ConditionCode of NOERROR and the endpoint is not hated. If the data
packet does not fill the buffer exactly, the buffer Rounding bit determines how the General TD will be
retired. If the buffer Rounding bit is not set, then the underrun is trested as an error condition. The
ConditionCode field is set to DATA UNDERRUN, the Generd TD retired, and the endpoint is halted. If
the buffer Rounding field is set, then the Generd TD isretired without error. This condition is
differentiated from a buffer-filled completion condition by CurrentBuffer Pointer not being zero when

25

OpenHCI - Open Host Contraller Interface Specification for USB

the Generd TD isretired.

26

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.1.3.6.3 System Errors

For Generd TDs, system error sources are limited. In particular, an OpenHCI Host Controller will
never have an overrun or underrun of itsinterna buffering for a Generd TD. An OpenHCI Host
Controller isnot dlowed to issue an IN to an endpoint unless there is sufficient buffer space within the
Host Controller to accept a data packet of Maximum Packet Size from the endpoint (64 bytesfor a
Generd TD) without having to access sysem memory. Similarly, the Host Controller is not dlowed to
issue an OUT or SETUP token unlessit has pre-fetched to an internd buffer dl the data thet is sent to
the endpoint in the data phase.

4.3.1.3.7 Special Handling
4.3.1.3.7.1 NAK

When an endpoint returns aNAK handshake, dl Generd TD fields remain the same after the
transaction as they were when the transaction began. The Host Controller makes no changes.

4.3.1.3.7.2 Stall

If an endpoint returnsa STALL PID, the Host Controller retires the Generd TD with the
ConditionCode set to STALL and hdtsthe endpoint. The CurrentBuffer Pointer, ErrorCount, and
dataToggle fidlds retain the values that they had at the Sart of the transaction.

4.3.2 Isochronous Transfer Descriptor

An Isochronous TD is used exclusively for isochronous endpoints. All TDs linked to an ED withF=1
must usethisformat. This 32-byte structure must be digned to a 32- byte boundary in system memoary.

4.3.2.1 Isochronous Transfer Descriptor Format
3 2]2l2 2|2 2|2 ‘1 olo
1 8|76 4|3 1]0 6 5|4
Dword 0 CC [-] FC DI — SF
Dword 1 Buffer Page 0 (BPO) —
Dword 2 NextTD |
Dword 3 Buffer End (BE)
Dword 4 Offsetl/PSW1 Offset0/PSWO
Dword 5 Offset3/PSW3 Offset2/PSW2
Dword 6 Offset5/PSW5 Offset4/PSW4
Dword 7 Offset7/PSW7 Offset6/PSW6

Figure 4-3: Isochronous TD Format

27

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.2.2 Isochronous Transfer Descriptor Field Definitions

Table 4-3: Fidd Definitionsfor 1sochronous TD

HC
Name Access Description

SF R StartingFrame
This field contains the low order 16 bits of the frame number in which the
first data packet of the Isochronous TD is to be sent.

DI R DelayInterrupt
This field contains the interrupt delay for this Isochronous TD.

FC R FrameCount

Number of data packets (frames) of data described by this Isochronous TD.
FrameCount = 0 implies 1 data packet and FrameCount = 7 implies 8.
CcC R/W ConditionCode

This field contains the completion code when the Isochronous TD is moved
to the Done Queue (see Section 0.)

BPO R BufferPage0

The physical page number of the first byte of the data buffer used by this
Isochronous TD

NextTD R/W NextTD

This entry points to the next Isochronous TD on the queue of Isochronous
TDs linked to an ED

BE R BufferEnd
Contains the physical address of the last byte in the buffer.
OffsetN R Offset
Used to determine size and starting address of an isochronous data
packet.
PSWN W PacketStatusWord

Contains completion code and, if applicable, size received for an
isochronous data packet (details in Section 4.3.2.4.)

4.3.2.3 Isochronous Transfer Descriptor Description

An Isochronous Transfer Descriptor (TD) describes the data packets that are sent to or received from
an isochronous endpoint. The data packets in an 1sochronous TD have atime component associated
with them such that a data packet is transferred only in the specific frame to which it has been assigned.
An Isochronous TD may contain buffersfor 1 to 8 consecutive frames of data (FrameCount+1) with
the firgt (Oth) data packet of an I1sochronous TD sent in the frame for which the low 16 bits of
HcFmNumber match the StartingFrame field of the Isochronous TD.

The Host Controller does an unsigned subtraction of StartingFrame from the 16 bits of
HcFmNumber to arrive & aSgned value for ardéive frame number (frame R). If the relative frame
number is negetive, then the current frame is earlier than the Oth frame of the Isochronous TD and the
Host Controller advancesto the next ED. If the relative frame number is grester than FrameCount,
then the Isochronous TD has expired and a error condition exists (details for dedling with this error are
described in alater section). If the relative frame number is between O

and FrameCount, then the Host Controller issues a token to the endpoint and attempts a data transfer
using the buffer described by the 1sochronous TD.

28

OpenHCI - Open Host Contraller Interface Specification for USB

When the last data packet of an Isochronous TD is transferred, the Isochronous TD is retired to the
Done Queue.

Table 4-4: Example Calculation of R and Host Controller Action

HcFmNumber ITD.Frame R ITD.FC | HC Action
OxFFFC OxFFFE OXFFFE (-2) 3 Do nothing
OxFFFD OxFFFE OXFFFF (-1) 3 Do nothing
OxFFFE OxFFFE 0x0000 3 Send data packet 0
OxFFFF OxFFFE 0x0001 3 Send data packet 1
0x0000 OXFFFE 0x0002 3 Send data packet 2
0x0001 OxFFFE 0x0003 3 Send data packet 3 and retire
Isochronous TD

4.3.2.3.1 Buffer Addressing

The buffer address for an isochronous data packet is determined by using the rdative frame number R
to pick an Offset or pair of Offsets from the Isochronous TD. These values are used to determine the
garting and ending physical address of the buffer for the data packet. Offset[R] determines the starting
address. Thelow order 12 hits of the Offset are the offset within a4K physica page of the dart of the
buffer. Bit 12 of offsat R then selects the upper 20 bits of the physica address as either Buffer PageO
when bit 12 = 0 or the upper 20 bitsof Buffer End when bit 12 = 1.

If the data packet is not the last in an Isochronous TD (R not equal to FrameCount), then the ending
address of the buffer isfound by using Offset[R+1] - 1. Thisvaueisthen used to create aphysica
addressin the same manner as the Offset[R] was used to create the starting physica address (e.g., use
bit 12 as page selector and low order 12 bits as page offset). If, however, the data packet isthe lagt in
an Isochronous TD (R = FrameCount), then the value of BufferEnd isthe address of the last bytein
the buffer.

During a data packet transfer, the buffer address may cross a4K boundary. If this should occur, the
HC, asit does with Genera TDs, uses the upper 20 bits of the computed data packet buffer end
address as the physical address of the next page. This dlows scatter/gather of the data within a
isochronous data packet.

If the Host Controller supports checking of the Offsets, if either Offset[R] or Offset[R+1]does not
have a ConditionCode of NOT ACCESSED or if the Offset[R+1] is not greater than or equal to
Offset[R], then an Unrecoverable Error isindicated.

29

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.2.3.2 Data Packet Size

The sze of the data packet that isto be sent or expected to be received is determined by the computed
address values and not by MaximumPacketSize inthe ED. A check that the buffer described by the
Offsatsisless than or equa to M aximumPacketSize is not required.

If Offset[R] and Offset[R+1] are the same, then a zero-length packet isindicated. For a zero-length
OUT packet, the Host Controller issues a token and sends a zero length data packet. For azero-length
IN packet, the Host Controller issues atoken and accepts a zero-length data packet from the endpoint.

4.3.2.3.3 Status

After each data packet transfer, the Rth Offset is replaced with avaue that indicates the status of the
data packet transfer. The upper 4 bits of the vaue are the ConditionCode for the transfer and the

lower 12 hits represent the size of the transfer. Together, these two fields condtitute the Packet Status
Word (PacketStatusword).

After adata packet istransferred, the Host Controller sets both fields of the PacketStatusword. For
an OUT, inthe absence of transfer errors, thesizefieldisset to 0. For an IN, the sizefied indicates

the actua number of bytes written to memory. In the absence of errors, thisis dso the number of bytes
received from the endpoint.

4.3.2.3.4 Transfer Completion

An Isochronous TD is completed when dl FrameCount+1 data packets have been transferred. In the
framewhen R = FrameCount, after the data transaction is complete and the Offset R updated, the

ConditionCode of the Isochronous TD is set to NOERROR and the |sochronous TD is retired to the
Done Queue.

4.3.2.3.5 Transfer Errors

Trander errorsfor isochronous errorsfal into four categories:
?7? transmission

?? sequence

?? time

?? sysem

30

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.2.3.5.1 Transmission Errors

Since there is no handshake for isochronous transfers, the Host Controller can detect transmission
errors for transfers only from an endpoint to the host (IN). The error may be either a CRC error, a
BITSTUFFING error, or a DEVICENOTRESPONDING error. If any of these errors occurs during the
trandfer, the ConditionCode of PacketStatusword[R] is set accordingly and the szefidd reflects the
number of bytes received (up to the size of the buffer defined for the frame) and

placed in the memory buffer. For abit stuffing error, the Host Controller writes up only to the last byte
received before the bit stuffing error is detected.

If atransmission error is detected along with a sequence or system error, the transmission error isthe
onethat isreported in the ConditionCode.

A PID check error in the PID from an endpoint is reported with a ConditionCode of
PIDCHECKFAILURE.

4.3.2.3.5.2 Sequence Errors

A sequence error occurs when the endpoint sends more or less data than is expected and atransmission
error is not present. If the endpoint sends more data than will fit in the specified buffer, the
ConditionCode for the PacketStatusWord is set to DATAOVERRUN and the Szefidd is set to the
gze of the buffer. The Host Controller writes the received data to memory up to the limit of the buffer
defined for the frame. If the endpoint sends less data than defined by the buffer, the ConditionCode
for the PacketStatuswWord is set to DATA UNDERRUN.

4.3.2.3.5.3 Time Errors

Each packet has a specific frame in which it isto be transferred. It is possible that the Host Controller
cannot start or complete the transfer in the specified frame. There are two manifestations of this type of
error: skipped packets and late retirement of an Isochronous TD.

Skipped packets occur if the Host Controller does not process an Isochronous TD in aframe for which
the Isochronous TD hasdata. A skipped packet isindicated when an Offset/PacketStatusWord is
set to NOT ACCESSED after the Isochronous TD isretired. This indicates that the Host Controller did
not process the I1sochronous TD for the frame and therefore did not change the Offset to a
PacketStatusword.

When the Host Controller skipsthe last packet of the Isochronous TD, a more significant error occurs.
Since the Isochronous TD was not processed in the frame in which it should have been retired, the
Isochronous TD remains on its ED’s queue. When the Host Controller processes the Isochronous TD
in alatter frame, it finds that the time for expiration of the |sochronous TD has passed. In such cases,
the Host Controller sets the ConditionCode for the Isochronous TD to DATA OVERRUN and retires the

31

OpenHCI - Open Host Contraller Interface Specification for USB

Isochronous TD (it does not, however, set the Halted bit in the ED). The Host Controller then
accesses the next Isochronous TD for the same ED and processes
it.

32

OpenHCI - Open Host Contraller Interface Specification for USB

Note: Setting DATAOVERRUN in the ConditionCode for the Isochronous TD rather than the
PacketStatusword indicates atime overrun. The same code in a PacketStatuswor d will
indicate a true data buffer overrun.

Table 4-5: Example of Time Overrun

HcFmNumber ITD.Frame R ITD.FC | HC Action
OXFFFC OXFFFE OXFFFE (-2) 3 Do nothing
OXFFFD OxFFFE OXFFFF (-1) 3 Do nothing
OxFFFE OxFFFE 0x0000 3 Send data packet 0
Host Controller does not process Isochronous TD for three frames due to schedule overrun, then...
0x0002 OXFFFE 0x0004 3 Retire Isochronous TD with DATAOVERRUN
in ITD.CC

4.3.2.3.5.4 System Errors

The most probable source of system errors for isochronous transfersis underrun or overflow/overrun of
the HC'sinterna data buffers. An Isochronous TD is alowed to specify a single data packet of up to
1023 bytes. It isnot expected that Host Controller implementations will contain sufficient internal
buffering for the largest possible isochronous packet. Therefore, thereis apossibility that the system
will not provide timely accessto the system bus to dlow the Host Controller to keep up with the USB
dataratein dl cases. This can causethe HC sinternd buffer to overflow with data from an endpoint or
to underrun and have no data to send to an endpoint when it isrequired. Buffer overrun happens only
on IN endpoints and underrun happens only on OUT endpoaints.

When an underrun occurs, the Host Controller sets the ConditionCode of the data packet’s
PacketStatuswWord to BUFFERUNDERRUN and the Sze field is set to zero.

Note: Thisunderrun condition isSgnaled on USB by the Host Controller forcing a bit-suffing violation
with the recommendation that the bit stuff violation last 16 bit times (i.e,, 16 bit times without a
trangtion on the bus).

When an overrun condition occurs, the Host Controller sets the ConditionCode of the data packet’s
PacketStatusword to BUFFEROVERRUN and writes the size field to indicate the last byte successfully
received from the endpoint before the overrun condition occurred. All data received from the endpoint
before the overrun condition occurred are stored in system memory. If, after detecting an overrun, the
Host Controller detects atransmission error, then the transmission error is recorded in the
PacketStatuswWord ingtead of the overrun error.

33

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.2.3.6 Special Handling
4.3.2.3.6.1 NAK and STALL

NAK and STALL are not nominally supported by the isochronous protocol. If an isochronous
endpoint returns either of these handshake packets during the data phase of an IN, the Host Controller
writes the ConditionCode of the frames PacketStatuswWord to STALL and sets the datasize to O.
The Isochronous TD is not retired early and the endpoint is not hated.

4.3.2.4 PacketStatusWord

1 1111 0
5 2(1]0 0
cC |0 SIZE

Figure 4-4. PacketStatusWord Format

4.3.2.4.1 Packet Status Word Field Definitions

Table 4-6: Fidd Definitionsfor Packet StatusWord

Name R/W Description

SIZE w Size of Packet

On an IN transfer, this 11-bit field is written to contain the number of bytes
received from the endpoint. On an OUT, this field is written to 0.

CC w Condition Code

Used both to indicate completion status and the format of the word. When the
Condition Code indicates NOT ACCESSED, the data is in Offset format.
Otherwise, the SIZE field contains a value that is appropriate to the direction of
data flow and the completion status.

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.3 Completion Codes

Table 4-7: Completion Codes

Code Meaning Description

0000 NOERROR General TD or isochronous data packet processing
completed with no detected errors

0001 CRC Last data packet from endpoint contained a CRC etror.

0010 BITSTUFFING Last data packet from endpoint contained a bit stuffing
violation

0011 DATATOGGLEMISMATCH Last packet from endpoint had data toggle PID that did not
match the expected value.

0100 STALL TD was moved to the Done Queue because the endpoint
returned a STALL PID

0101 DEVICENOTRESPONDING Device did not respond to token (IN) or did not provide a
handshake (OUT)

0110 PIDCHECKFAILURE Check bits on PID from endpoint failed on data PID (IN) or
handshake (OUT)

0111 UNEXPECTEDPID Receive PID was not valid when encountered or PID value is
not defined.

1000 DATAOVERRUN The amount of data returned by the endpoint exceeded

either the size of the maximum data packet allowed from
the endpoint (found in MaximumPacketSize field of ED) or
the remaining buffer size.

1001 DATAUNDERRUN The endpoint returned less than MaximumPacketSize and
that amount was not sufficient to fill the specified buffer

1010 reserved

1011 reserved

1100 BUFFEROVERRUN During an IN, HC received data from endpoint faster than it
could be written to system memory

1101 B UFFERUNDERRUN During an OUT, HC could not retrieve data from system
memory fast enough to keep up with data USB data rate.

111x NOT ACCESSED This code is set by software before the TD is placed on a

list to be processed by the HC.

35

OpenHCI - Open Host Contraller Interface Specification for USB

4.3.3.1 Condition Code Description

For Generd TDs, the condition codesin ConditionCode have meaning to software only if the Generd
TD ison the Done Queue. For CRC, BITSTUFFING, and DEVICENOTRESPONDING errors, the Generd
TD is not moved to the Done Queue unless errors are encountered in three successive accesses of the
device (error does not have to be the samein al three attempts.) For STALL, DATA OVERRUN, oOr
DATA UNDERRUN, the Generd TD is moved to the done queue on the first occurrence of the error.
BUFFEROVERRUN or BUFFERUNDERRUN are not used for Genera TDs.

When a Genera TD ismoved to the done queue with the ConditionCode set to other than NOERROR,
the Halted bit in the ED for the endpoint is set to halt processing of Generd TDsfor the endpoint until
software clears the error condition.

For an Isochronous TD, condition codes appear in two places. in ConditionCode of Dword0 and in
each of the Offset/PacketStatusWords. For each data packet processed, the Host Controller
converts OffsetR into PSWR by setting the ConditionCode fied. All condition codes are valid for a
PacketStatusword. The ConditionCode in DwordO of the Isochronous TD is

set when the TD is moved to the done queue. The Isochronous TD can be moved to the done queue
when the last data packet is transferred (in which case the ConditionCode will be NOERROR) or dueto
the frame for the last data packet having passed (in which case the ConditionCode will be
DATAOVERRUN.) In no case does the Host Controller set the Halted hit in the ED for an Isochronous
TD. An lsochronous TD with aNOERROR ConditionCode may contain PacketStatuswWor ds with
ConditionCodes other than NOERROR.

4.4 Host Controller Communications Area

The Host Controller Communications Area (HCCA) is a 256-byte structure of syslem memory that is
used by system software to send and receive specific control and status information to and from the
HC. This structure must be located on a 256-byte boundary. System software must write the address
of thisstructurein HCHCCA inthe HC. This structure dlows the software to direct the HC' s functions
without having to read from the Host Controller except in unusua circumstances (e.g., error conditions).
Normd interaction with the Host Controller can be accomplished by reading vaues from this structure
that were written by the Host Controller and by writing to the HC' s operation registers.

Note: Itisexpected that writesto the Host Controller will be posted and have minimal impact on
CPU performance,

36

OpenHCI - Open Host Contraller Interface Specification for USB

4.4.1 Host Controller Communications Area Format

Size
Offset (bytes) Name R/W Description
0 128 HccalnterrruptTable R These 32 Dwords are pointers to interrupt EDs.

0x80 2 HccaFrameNumber W Contains the current frame number. This value is
updated by the HC before it begins processing
the periodic lists for the frame.

0x82 2 HccaPadl W When the HC updates HccaFrameNumber, it
sets this word to 0.
0x84 4 HccaDoneHead W When the HC reaches the end of a frame and its

deferred interrupt register is 0, it writes the
current value of its HcDoneHead to this location
and generates an interrupt if interrupts are
enabled. This location is not written by the HC
again until software clears the WD bit in the
HclinterruptStatus register.

The LSb of this entry is set to 1 to indicate
whether an unmasked HclinterruptStatus was
set when HccaDoneHead was written.

0x88 116 reserved R/W | Reserved for use by HC

Figure 4-5: Hogt Controller Communications Area For mat

4.4.2 Host Controller Communications Area Description
4.4.2.1 HccalnterruptTable

Hccal nterruptTable is a 32-entry table with each entry being a Dword. The table entries are pointers
to an Interrupt List each of whichisalist of EDs. Each ED then points to aqueue of TDsfor that
endpoint. Hccal nterruptTable is accessed once per frame by the HC. The low order 5 bits of the
current frame number is used as an index into the table.

An ED for an interrupt endpoint may appear on multiple Interrupt Ligts. The more listsin which an ED
islinked, the grester its polling rate. An ED that isin only one list has apolling rate of once every 32
ms. An ED that ison 2 lists has apolling rate of once every 16 ms. If an ED islinked into dl 32 ligts,
then it has apalling rate of once per 1 msor every frame. Thislig structure alows uniform polling only
aintervalsof 1, 2, 4, 8, 16, and 32 ms.

A grouping of EDs with the same polling rate that occursin the same frameisa sublist. The number of
sublists at each polling rate is the same as the palling rate. For example,
there can be two sublists with polling rates of 2 mswith each list being processed on dternate frames.

The last entry in each of the 32 interrupt lists must point to the isochronous lit.

37

OpenHCI - Open Host Contraller Interface Specification for USB

4.42.2 HccaFrameNumber

This 16-bit valueis updated by the Host Controller on each frame. Thisvaue iswritten with the
SartingFrame fidd of HcFmNumber after the Host Controller has sent an SOF and before the Host
Controller reads an ED for processing in the new frame. The Host Controller transfers no dataon USB
between the time it sends an SOF and the time it updates this memory location.

4.42.3 HccaDoneHead

When aTD is complete (with or without an error) it is unlinked from the queue that it is on and linked to
the Done Queue. The Host Controller maintains aphysica pointer to the last TD that was placed on
the done queue (HcDoneHead.) When aTD is put on the done queue, the vduein HcDoneHead is
written to NextTD of the just completed TD and HcDoneHead is changed to contain the address of the
TD just competed. This causes TDs to be linked at the head of the done queue. Linking at the head of
the queue alows the hardware to maintain only one pointer for the Done Queue and dso dlowsthe
linking to the Done Queue to be done at the same time as the ConditionCode update in a completed
TD saving amemory access (i.e., the same write that updates the ConditionCode of a TD can be
extended to cause the NextTD vaue of the TD to point to the TD that was previoudly at the head of the
Done Queue)

Periodicaly, the Host Controller writes the current value of its HcDoneHead regigter into amemory
location (HccaDoneH ead) so that host software can process completed TDs. Nomindly,
HcDoneHead is written to memory at the beginning of a frame when the deferred interrupt count is
zero. After HcDoneHead iswritten to HccaDoneH ead, the Host Controller sets HcDoneHead to O
and sats the WD hit in the HelnterruptStatus register. The Host Controller can begin to build anew
Done Queue immediatdy after writing to HccaDoneH ead but it cannot write the new list to memory
until the Host Controller Driver has cleared the WD bit. This protocol provides an interlocked
exchange of the Done Queue.

The LSb of thisvaueis used to inform the Host Controller Driver that an interrupt condition exists for
both the done list and for another event recorded in the HelnterruptStatus register. On an interrupt
from the HC, the Host Controller Driver checks the HccaDoneHead Vdue. If thisvadueisO, then the
interrupt was caused by other than the HccaDoneH ead update and the HclnterruptStatus register
needs to be accessed to determine that exact interrupt cause. If HccaDoneHead is nonzero, then a
done list update interrupt isindicated and if the LSb of the Dword is nonzero, then an additiond
interrupt event isindicated and HclnterruptStatus should be checked to determineits cause.

38

OpenHCI - Open Host Contraller Interface Specification for USB

4.5 Endpoint List Processing

The Host Controller schedules transfers to endpoints on USB based on the structure of the four
endpoint lists: bulk, control, interrupt, and isochronous. For bulk and control, the Host Controller
maintains a oftware- accessible pointer to the head of the list. For interrupt, 32 list heads are kept in
memory with alist selected each frame. Theisochronouslist islinked to the end of al of the interrupt
ligts. In addition to the head pointers, the Host Controller maintains three software-accessble pointers
to the current ED for control, bulk, and an additiona pointer that is used for both periodic lists (interrupt
and isochronous.)

The Hogt Controller sdlectsalist to process based on apriority algorithm. At the beginning of each
frame, processing of the control and bulk list has priority until the HcFmRemaining counts down to the
vauein HcPeriodicSart. At tha point, processing of the periodic lists has priority over control/bulk
processing until ether periodic list processing is complete or the frame time expires.

While control and bulk have priority, the Host Controller aternates processing of EDs on each of the
ligs. The sting of the Control Bulk Ratio fiddin HcControl determines the retio of the number of
control to bulk transactions that will be attempted. If CB is set to 00b, then the Host Controller dlows
one bulk transaction for each control transaction. If CB = 11b, then the Host Controller allows one
bulk trangtion after every 4 control transactions. If a@ther the control or bulk ligts is empty, then 100%
of the control/bulk time is alocated to the list thet is not empty.

The control and bulk lists are considered empty if either no EDs are linked to the list (the head pointer in
the Host Controller contains azero) or if dl the TD queues of the EDs on the list are empty. To detect
this empty condition, the Host Controller maintains two bits: control-filled (CF) and bulk-filled (BF) in
the HcCommandStatus register. When the Host Controller starts processing at the head of the control
or bulk lit, it clears the corresponding filled bit. When the Host Controller finds an ED in the control or
bulk list with a TD to be processed, it sets the corresponding filled bit. When the Host Controller
reachesthe end of the lig, it checksthefilled bit. If it is zero, then the list is empty and processing of the
list stops. When the Host Controller Driver makes an addition to either the control or bulk ligts, it must
write to the corresponding filled bit to ensure that the Host Controller continues to processthe list.

39

OpenHCI - Open Host Contraller Interface Specification for USB

4.6 Transfer Descriptor Queue Processing

For atrandfer to or from an endpoint to occur, a TD must be linked to the queue associated with the
ED. HeadP and TailP inan ED definethe TD queue. If HeadP and TailP are not the same, then
HeadP is apointer to the TD that will be processed when the Host Controller reaches the ED.

Software queuesto the list by using the value of TailP to obtain the physica address of thelast TD
queued to the ED. Sincethe TD pointed to by TailP is not accessed by the HC, the Host Controller
Driver caninitidizethat TD and link at least one other to it without creeting a coherency or
synchronization problem. After the new TDs are linked, TailP is updated,

extending the list of TDsthat can be accessed and processed by the HC, with TailP again pointing to a
TD that can beinitidized by software. Software may not dter in any way any of the TDs it has queued
prior to the one pointed to by TailP until the Host Controller completes processing of the TD or the
Host Controller Driver ensures that queue processing for the ED has been halted.

When the Host Controller finishes processng a TD, it copies the NextTD vaue from the just completed
TD into HeadP of the ED. For a Generd TD, the Host Controller dso setsthetoggle Carry bit to the
vaue of the last used data toggle for the endpoint and setsthe Halted bit to O if the TD completed
without error or to 1 if an error occurred.

40

OpenHCI - Open Host Contraller Interface Specification for USB

5. HOST CONTROLLER DRIVER

This section covers details of how the Host Controller Driver (HCD) interacts with the Host Controller
Interface. Where necessary, this section goes into how the Host Controller Driver may be implemented
in order to provide a clear understanding of how the software is intended to interact with the OpenHCI.

The provided sample code isintended to illustrate the interaction between the software and the
hardware and is not intended to be a complete driver implementation. Notethat many smplifying
assumptions have been made and many items that do not add to the reader’ s understanding of the
interaction between the software and the hardware are omitted. Two of the assumptions used for the
samples are that the code is for a uniprocessor machine and that al the samples are run with the
interrupts disabled.

The Host Controller Driver isresponsible for a per-Host Controller set of data called device data.

5.1 Host Controller Management

The Hogt Controller (HC) isfirst managed through a set of Operationd Registers. These registers exist
in the Host Controller and are accessed using memory references via a noncached virtua pointer. All
Host Controller Operationa Registers start with the prefix He. Refer to Section 7, Operationa
Regigers, for acomplete definition of dl the He registers. The HCHCCA isfilled in by software and
points the Host Controller at the block of shared RAM caled the Host Controller Communication Area
(HCCA). All fiddswithinthe HCCA gart with the prefix Heca. Refer to Section 4.4, Host Controller
Communications Area,, for acomplete definition of dl the Hecas.

5.1.1 Initialization

There are anumber of steps necessary for an OS to bring its Host Controller Driver to an operationa
date:

?? Load Host Controller Driver and locate the HC

?? Veify the HC and dlocate system resources

?? Take control of HC (support for an optiond System Management Mode driver)

?? Sat up HC registers and HC Communications Area

?7? Begin sending SOF tokens on the USB

Note: Dueto some devices on the USB that may take along time to reset, it is desirable that the Host
Controller Driver startup process not trangition to the USBRESET Sateif at dl possble. The
description of driver and contraller initidization in following sections takes this into account.

41

OpenHCI - Open Host Contraller Interface Specification for USB

OpenHCI
Operational | Host Controller
Registers | Commications Area
Mode | Interrupt O
HccA F————®] Interupt 1
Status Interrupt 2
Event
Frame Int Interrupt 31
Ratio

Done [i e ¥ ¥ B

Device Register
in memory space

I
I
I
I
I
I
Control |
Bulk |
I
I % E E
I
I
I
I
I
I
I

Figure5-1: The OpenHCI Host Controller

5.1.1.1 Load and Locate

When the Hogt Controller Driver firgt loads, it locates the Host Controller and its operationd registers
through a process of Device Enumeration that is specific to both the operating system environment and
the hogt bus on which the Host Controller resides.

5.1.1.2 Verify Host Controller and Allocate Resources

The Host Controller Driver checks the Revision fidd in the HcRevision regigter to verify the HC's
interface is competible with the Host Controller Driver. When checking the Revision, the Host
Controller Driver must mask the rest of the bitsin the HcRevision register asthey are used to specify
which optiond features that are supported by the HC. The Host Controller Driver then alocates and
initidizes any Hogt Controller structures, including the HCCA block, and operating system sStructures it
needs. Upon success, the Host Controller Driver retains the noncached virtual address of the operation
register block in its device data

42

OpenHCI - Open Host Contraller Interface Specification for USB

5.1.1.3 Take Control of Host Controller

OpenHCI dlowsfor optiond support of legacy devices through the use of System Management Mode
software and System Management Interrupt hardware. In order to provide for this, amechanismis
defined to allow control of the Host Controller to be passed between the SMM driver and an OS
driver; both of these drivers may properly be caled an Host Controller Driver, but only oneis active a
any giventime. Only the active Host Controller Driver is dlowed to write to Host Controller registers
or manipulate lists and queues, with the exception of writing the Owner shipChangeRequest hit to the
HcCommandStatus register (only an OS driver doesthis). There is dso another interesting case where
the system vendor chooses not to emulate legacy devices but does wish to support USB devicesin
firmware (BIOS); in this case, System Management Mode is not used. The following cases are
discussed separatdy in following sections:

?? Initidization of an SMIM driver after acold power-up

?? Initidization of aBIOS driver

?7? Initidization of an OS driver when an SMM driver is active

?? Initidization of an OS driver when a BIOS driver is active

?? Initidization of an OS driver when neither an SMM nor aBIOS driver isective

?? Re-initidization of an SMM driver (control returned by an OS driver)

5.1.1.3.1 SMM Driver, Power-Up

The SMM driver gains control of the processor before any other driver; this means that the Host
Controller will be in the Sate that it enters after a hardware reset (USBRESET). The SMM driver must
st the InterruptRouting bit in the HcControl register. This causes dl Host Controller interrupts to be
routed to the SMI. Since the SMIM driver is system-specific, if it has knowledge of proper settings for
systemspecific fieds in the Host Controller registers, it should set those to thelr proper vaues at this
time. Thesefiddsincdude RemoteWakeupConnectedin the HcControl register, Framel nterval
and FSL ar gestDataPacket in the HcFminterval register, Power SwitchingM ode and

Over CurrentProtection in the HcRhDescriptor A register, and Power OnT oPower Good Time and
RemovableDevice in the HcCRhDescriptor B register. The driver should then wait a least the minimum
time specified in the USB Specification for assertion of reset on the USB before it proceeds to the setup
of theHC.

5.1.1.3.2 BIOS Driver

The BIOS driver is not expected to exist if thereisan SMM driver (on asystem with an SMM driver,
the BIOS is expected to communicate its needs to the SMM driver in a system-specific manner). The
BIOS driver gains control of the processor before any other driver, but the Host Controller may not be
inthe USBRESET dtate because this may be awarm boot. For the purpose of OpenHCI, acold boot is
defined as one in which the HostContr oller Functional State in the HcControl register is found to be
USBRESET.

43

OpenHCI - Open Host Contraller Interface Specification for USB

On acold boot, the BIOS driver should use the system-specific knowledge it hasto initidize the
system-specific fiddsin the Host Controller registers. Thesefiddsinclude:

RemoteW akeupConnected in the HcControl register, Framel nterval and FSLar gestDataPack et
inthe HcFminterval register, Power SwitchingM ode and Over CurrentProtection in the
HcRhDescriptor A register, and Power OnToPower GoodTime and RemovableDevice inthe
HcRhDescriptor B regigter. The driver should then wait at least the minimum time specified in the USB
Specification for assertion of reset on the USB before it proceeds to the setup of the HC.

On awarm boat, if the HostController Functional State is USBOPERATIONAL, then the BIOS driver
should proceed directly to the setup of the HC. Otherwise, the BIOS driver should set the
HostController Functional State to UsBRESUME and wait the minimum time specified in the USB
Specification for assertion of resume on the USB before it proceeds to the setup of the HC.

5.1.1.3.3 OS Driver, SMM Active

The OS driver knows that the SMM driver is active because the I nterruptRouting bit isset in the
HcControl register. The OS driver writes a one to the Owner shipChangeRequest bit in the
HcCommandStatus; then it monitors the I nterruptRouting bit to determine when the ownership
change has taken effect. The SMM driver receives an Ownership Change interrupt; this causes the
SMM driver to deconfigure al the devicesit has configured on the USB, clear dl interrupt masks, and
dissbledl ligt processng. Findly, the SVIM driver clearsthe I nterruptRouting bit and returns control
to the OS. Once the InterruptRouting bit is cleared, the OS driver may proceed to the setup of the
HC.

5.1.1.3.4 OS Driver, BIOS Active

By examining the contents of the HcControl register, the OS driver knows thereis an active BIOS
driver if the InterruptRouting bit is not set and the HostController Functional State is not
UsBREET. If the HostController Functional State is USBOPERATIONAL, then the OS driver should
proceed directly to the setup of the HC. Otherwise, the OS driver should set the

HostController Functional State to USBRESUME and wait the minimum time specified in the USB
Specification for assertion of resume on the USB before it proceeds to the setup of the HC.

5.1.1.3.5 OS Driver, neither SMM nor BIOS

By examining the contents of the HcControl register, the OS driver knows that thereis neither an SMM
driver nor aBIOS driver if the InterruptRouting bit is not set and the

HostController Functional State is USBRESET. The driver should then wait at least the minimum time
specified in the USB Specification for assertion of reset on the USB before it proceeds to the setup of
the Host Controller.

OpenHCI - Open Host Contraller Interface Specification for USB

5.1.1.3.6 SMM Driver, Re-Entry

Occasondly, to provide compatibility with older gpplications, an OS may decide to return control of
the Host Controller to the SMM driver. The OS driver should deconfigure dl the devices on the USB,
clear dl interrupt masks, and disable dl list processng. The OS driver should then write a one to the
Owner shipChangeRequest hit in the HcCommandStatus register; this causes an Ownership Change
interrupt usng SMI. Upon servicing this interrupt, The SMM driver setsthe InterruptRouting bitin
the HcControl register and proceeds to the setup of the Host Controller.

5.1.1.4 Setup Host Controller

The Host Controller Driver should now save the contents of the HcFminterval register and then issue a
software reset by writing a one to the HostContr oller Reset bit in the HcCommandStatus register.
After the software reset is complete (a maximum of 10 ?s), the Host Controller Driver should restore
the value of the HcFminterval register. The Host Controller is now in the USPSUSPEND date; it must
not stay in this state more than 2 ms or the USBRESUME state will need to be entered for the minimum
time specified in the USB Specification for the assertion of resume on the USB.

The Hogt Controller Driver should perform the following initidizations:

?7? Initidlize the device data HCCA block to match the current device data state; i.e, dl virtua
queues are run and constructed into physica queues on the HCCA block and other fields
initidized accordingly.

?7? Initidize the Operational Registers to match the current device data State; i.e, dl virtua
queues are run and congtructed into physica queues for HcControlHeadED and
HcBulkHeadED

?? Set the HCHCCA to the physical address of the HCCA block.

?? Set HclnterruptEnable to have dl interrupt enabled except SOF detect.

?? Set HcControl to have “dl queueson’.

?? Set HcPeriodicSart to avauethat is 90% of the vduein Framel nterval fidd of the
HcFminterval register.

5.1.1.5 Begin Sending SOFs

The HCD then begins to send SOF tokens on the USB by writing to the HcControl register with the
HostController FunctionalState set to USBOPERATIONAL and the appropriate enable bits set. The
Host Controller begins sending SOF tokens within one ms (if the HCD needs to know when the SOFs
it may unmask the StartOfFrame interrupt).

45

OpenHCI - Open Host Contraller Interface Specification for USB

5.1.2 Operational States

The operationd states of the Host Controller are defined by their effect on the USB:
?? USBOPERATIONAL
?? USBRESET
?? USBRESUME
?? USBSUSPEND

5.1.2.1 USBRESET

When the Host Controller enters this state, most of the operationd registers are ignored by the Host
Controller and need not contain any meaningful vaues, however, the contents of the registers (except
Root Hub regigters) are preserved by the HC. The obvious exception is that the Host Controller uses
the HcControl register which contains the HostContr oller Functional State. Whilein this date, the
Root Hub is being reset, which causes the Root Hub' s downstream ports to be reset and possibly
powered off. This state must be maintained for the minimum time specified in the USB Specification for
the assartion of reset on the USB. Only the following interrupts are possible while the Host Controller is
inthe USBRESET gtate: Owner shipChange.

5.1.2.2 UsSBOPERATIONAL

Thisisthe normd gate of the HC. In this state, the Host Controller is generating SOF tokens on the
USB and processing the various lists that are enabled in the HcControl register. Thisdlowsthe dients
of the Host Controller Driver, USBD and above, to communicate with devices on the USB. The Host
Controller generates the first SOF token within one ms of the time that the USBOPERATIONAL dtate is
entered (if the Host Controller Driver wants to know when this occurs, it may enable the
StartOfFrame interrupt). All interrupts are possible in the USBOPERATIONAL state, except
ResumeDetected.

5.1.2.3 USBSUSPEND

In this sate, the Host Controller is not generating SOF tokens on the USB; nor isit processng any lids
that may be enabled in the HcControl regigter. In fact, the Host Controller ignores most of the
operationa registers which need not contain any meaningful vaues, however, the Host Controller does
preserve thelr vdues. Whilein this sate, the Host Controller monitors the USB for resume Sgnding,
and if detected, changes the state to USBRESUME. Because of this, thereis arestriction on how the
Hogt Controller Driver may modify the contents of HcControl whilein the USBSUSPEND State: Host
Controller Driver may only write to HcControl with the HostController Functional State field st to
ether USBRESET or USBRESUME (See exception).

46

OpenHCI - Open Host Contraller Interface Specification for USB

After acertain length of time without SOF tokens, devices on the USB enter the suspend Sate.
Normally, the Host Controller Driver must ensure that the Host Controller stays in this sate for at least
5 ms and then exits this Sate to ether the USBRESUME or the USBRESET dtate. An exception iswhen
this state is entered due to a software reset and the previous state was not USBSUSPEND,

in which casg, if the Host Contraller remainsin the USBSUSPEND date for lessthan 1 ms, it may exit
directly to USBOPERATIONAL (the timing of less than 1 ms ensures that no device on USB attempts to
initiate resume sgnding and thus the Host Controller does not attempt to modify HcControl). The only
interrupts possible in the UsBSUSPEND state are ResumeDetected (the Host Controller will have
changed the HostContr oller Functional State to the USBRESUME state) and Owner shipChange.

5.1.2.4 USBRESUME

While the Host Controller isin the USBRESUME State, it is assarting resume signaing on the USB; asa
result, no tokens are generated and the Host Controller does not process any lists that may be enabled
inthe HcControl regigter. In fact, most of the operationa registers are ignored and need not contain
any meaningful values, however, the Host Controller does preserve their values. This state must be
maintained for the minimum time specified in the USB Specification for the assertion of resume on the
USB. The only interrupt possible in the USBRESUME state is Owner shipChange.

5.2 Schedule

The fundamenta way work is accomplished on USB by the Host Controller isvialists of Endpoint
Descriptors which in turn each have a queue of Transfer Descriptors. While the Host Controller isin
the USBOPERATIONAL dtete, it runs the different Endpoint Descriptor lists as setup in list head registers
of the operational registers. Asthe Host Controller processes each Endpoint Descriptor, it performs
work on the first enqueued Transfer Descriptor for that Endpoint Descriptor. The Transfer Descriptor
is (potentialy) updated to reflect the work which was done, and the Host Controller moves on to the
next Endpoint Descriptor. At some point, the work required by a Transfer Descriptor is completed by

the HC, and the Transfer Descriptor is put onto the Done Queue and returned to the Host Controller
Driver.

The Endpoint Descriptor lists are therefore the USB schedule of work to be performed by the Host
Controller while the Transfer Descriptors are the work to be performed as defined by the Endpoint
Descriptor schedule.

a7

OpenHCI - Open Host Contraller Interface Specification for USB

Process schedule

v

Endpoint descriptor list ——»

¢ } Transfer descriptor queues
Figure 5-2: USB Schedule

The Host Controller isrequired to perform some periodic processing every USB frame. In other
words, the Host Controller needs to process the current interrupt schedule and the isochronous
schedule every frame. In addition, in order to meet the guidelines outlined in the USB Specification, the
Host Controller must ensure that some portion of the frame is used to move the outstanding control and
bulk transfers. When anew frame starts, the Host Controller processes control and bulk Endpoint
Descriptors until the Remaining fidd of the HCFmRemaining register islessthan or equd to the Start
field of the HcPeriodicSart regiger. It then runs a periodic Endpoint Descriptor list by using the
lower five bits of the current frame number as an index into HecalnterruptTable. Oncethisis
complete, the Host Controller has fulfilled its obligated frame processing; it then fills the remaining frame
time by processing the control and bulk Endpoint Descriptor lists. Therefore, for time scheduled events
on USB, Host Controller Driver utilizes the various interrupt Endpoint Descriptor lists and other USB
work is scheduled into either the control or bulk Endpoint Descriptor ligs.

Note that the USB Specification also requires that control transfers must be favored over bulk transfers.
Thisis accomplished by setting the Contr ol Bulk Ser viceRatio fidd of the HcControl register to
indicate the number of control transfers processed for each bulk transfer processed. The control and
bulk Endpoint Descriptor lists are two separate lists which are each processed in around robin fashion
where n control Endpoint Descriptors are processed for every 1 bulk Endpoint Descriptor.

It isthe respongibility of the Host Controller Driver to ensure that it does not schedule more periodic
work then can fit in aframe. However, some PCs have latency issues that may cause USB bus
bandwidth scheduling problems in some rare cases. If the Host Controller cannot complete its obligated
frame processing before end of frame, the Host Controller increments Error FrameCounter in
HcCommandStatus, which causes the Schedule Overrun interrupt statusto be set. I thisis unmasked,
then an interrupt will occur.

48

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.1 Sample Host Controller Driver Definitions

The Host Controller definitions for an Endpoint Descriptor and Transfer Descriptors do not define fields
for software usage. Such fields are HCD-implementation-dependent and do not have any bearing on
OpenHCI itsdlf. However, in order to explain how HCD isto utilize the OpenHCI, some sample
definitions are provided in Section 5.2.2.

Since the provided definitions are samples only, they do not take into account the dignment
requirements of the HC-defined structures; any actud implementation of aHCD must ded with these
adignment issues

5.2.2 Miscellaneous Definitions

Il

// Doubly linked list

Il

typedef struct _LIST_ENTRY {
struct_LIST_ENTRY *Flink;
struct_LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

Table5-1: LIST_ENTRY

| Field Description
I Flink Virtual forward pointer to next structure
I Blink Virtual back pointer to previous structure

typedef volatile ULONG *PVULONG;

49

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.3 Host Controller Descriptors Definitions
The following definitions are the C equivaents to “ Endpoint Descriptors’ and “ Transfer Descriptors’.

11

/I Host Controller Endpoint Descriptor, refer to Section 4.2, Endpoint Descriptor
11

typedef struct_ HC_ENDPOINT_DESCRIPTOR {

HC_ENDPOINT_CONTROL Control; // dword 0

volatile ULONG TalP, //physica pointer to HC_TRANSFER _DESCRIPTOR
volatile ULONG HeadP; //flags+ physptr to HC_TRANSFER_DESCRIPTOR
volatile ULONG NextED; //physptr to HC_ENDPOINT_DESCRIPTOR

} HC_ENDPOINT_DESCRIPTOR, *PHC_ENDPOINT_DESCRIPTOR,;

#define HCEDHeadP_HALT Ox00000001 //hardware stopped bit
#define HCEDHeadP_CARRY (0x00000002 //hardware toggle carry bit

11

/I Host Controller Transfer Descriptor, refer to Section 4.3, Transfer Descriptors
11

typedef struct_ HC_TRANSFER_DESCRIPTOR {

HC_TRANSFER_CONTROL Control; /I dword O

PvVOID CBP,

volatile ULONG *NextTD; // physptrto HC_TRANSFER_DESCRIPTOR
PvVOID BE;

} HC_TRANSFER_DESCRIPTOR, *PHC_TRANSFER_DESCRIPTOR;

50

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.4 Host Controller Driver Descriptor Definitions

For each Host Controller descriptor, the Host Controller Driver has data items which Host Controller
Driver needs for its own housekeegping. In these sample definitions, this is done by defining a structure
which contains the Host Controller Driver fieds, then incorporating the Host Controller structure.

1

/I HCD Endpoint Descriptor

1

typedef struct_ HCD_ENDPOINT_DESCRIPTOR {

UCHAR Listindex;
UCHAR PausedFlag;
UCHAR Reserved[2];
ULONG Physical Address;
LIST_ENTRY Link;
PHCD_ENDPOINT Endpoint;

ULONG ReclamationFrame;
LIST_ENTRY PausedLink;
HC_ENDPOINT_DESCRIPTOR HCED;

} HCD_ENDPOINT_DESCRIPTOR, *PHCD_ENDPOINT_DESCRIPTOR,;

Table5-2: HCD_ENDPOINT_DESCRIPTOR

Field Description
Listindex Index into device data EdList. This is the identifier of which list this
ED is inserted.
PausedFlag Nonzero if ED is queued on PausedEDRestart list
PhysicalAddress Physical address of HCED
Link A doubly-linked list. While the ED is on a HC list, this link is used

to shadow the hardware list to some level. As an ED is being
removed from a HC list, this link is used to move the
HCD_ENDPOINT_DESCRIPTOR through various states finally
ending on the free list.

Endpoint HCD'’s endpoint structure for this ED
ReclamationFrame Used during the removal process of an ED from an HC list to track
what time an ED can safely be considered freed from the HC.
Used for running reclamation only.

PausedLink A doubly-linked list. While the ED is paused and awaiting restart
this link is used.
HcED HC Endpoint Descriptor

51

OpenHCI - Open Host Contraller Interface Specification for USB

I

/I HCD Transfer Descriptor

I

typedef struct_ HCD_TRANSFER_DESCRIPTOR {

UCHAR TDStatus;
BOOLEAN CancelPending;
ULONG Physical Address;
struct _ HCD_TRANSFER_DESCRIPTOR *NextHcdTD;
LIST_ENTRY RequestList
PUSBD_REQUEST UshdRequest;
PHCD_ENDPOINT Endpoint;
ULONG TransferCount;
HC_TRANSFER_DESCRIPTOR HcTD;

} HCD_TRANSFER DESCRIPTOR, *PHCD_TRANSFER DESCRIPTOR;

Table5-3: HCD_TRANSFER_DESCRIPTOR

Field Description
TDStatus Status of this TD, includes PENDING, COMPLETED, CANCELED, and
NOTFILLED (indicates the dummy TD at the end of the endpoint’s
queue; no other fields are valid).
CancelPending True if the UsbdRequest has been canceled and this TD is waiting
for cleanup.
PhysicalAddress Physical address of HcTD
NextHcdTD Virtual pointer to next HCD_TRANSFER_DESCRIPTOR on the
endpoint’s queue.
RequestList Links to other HCD_TRANSFER_DESCRIPTORSs associated with
the same UsbdRequest.
UsbdRequest Pointer to the transfer request at the USBDI for which the transfer
was created.
Endpoint Pointer to the endpoint to which the transfer is queued.
TransferCount Total number of bytes queued for this transfer.

52

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.5 Host Controller Endpoints

Endpoint Descriptors are the structures which gppear in lists that the Host Controller processes. Above
that Host Controller Driver and USBD submit transfer requeststo “endpoints’. An endpoint structure is
maintained until the connection to the endpoint is close, while an Endpoint Descriptor is maintained only
while thereis scheduled transfers to the endpoint. USBD coordinates the creation and deletion of
endpoint structures and provides memory within each endpoint structure for Host Controller Driver to
maintain issae. In this example, the HCD-specific area of an endpoint structure would be defined as:

typedef struct HCD_ENDPOINT {

UCHAR Type;
UCHAR Listindex;
UCHAR Reserved[2];
PHCD_DEVICE_DATA DeviceData;
HC_ENDPOINT_CONTROL Control;
PHCD_ENDPOINT_DESCRIPTOR HcdED;
PHCD_TRANSFER_DESCRIPTOR HcdHeadP;
PHCD_TRANSFER_DESCRIPTOR HcdTallP;
ULONG Rate;
ULONG Bandwidth;
ULONG MaxPacket;

} HCD_ENDPOINT, *PHCD_ENDPOINT;

Table5-4: HCD_ENDPOINT

Field Description
Type Isochronous, Interrupt, Control, Bulk
Listindex Index into device data EdList. This is the identifier of which list ED
for this endpoint are to be inserted.

DeviceData Pointer to corresponding device data for the HC to which the

endpoint is connected.
Control PID, direction, etc.
HcdED Current endpoint descriptor which is scheduled.
HcdHeadP This is a virtual pointer to the first TD on this endpoint’'s queue
HcdTailP This is a virtual pointer to the last TD on this endpoint’'s queue,
unless it is in the process of being filled in this is a dummy
structure.
Rate This is the requested polling rate for an interrupt endpoint, the
actual rate used is indicated by Listindex.

Bandwidth For isochronous or interrupt endpoints, this value represents the
amount of bandwidth which is required for the endpoint when it's
opened. For control or bulk endpoints, this value represents the
maximum packet size to be transferred to or from the endpoint in
any one packet.

MaxPacket Maximum packet size for this endpoint.

53

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.6 Host Controller Driver Internal Definitions

Thefollowing definitions describe information internd to the Host Controller Driver and the Universal
Serid Bus Driver; they are samples only and not representations of what must be present within the
Host Controller Driver. No attempt is made to be complete; sufficient information is supplied only to
give abackground for the code samplesin later sections.

1

/I USBD Request

1

typedef struct _USBD_REQUEST {

PCHAR
ULONG
ULONG
ULONG
BOOLEAN
UCHAR
ULONG
LIST_ENTRY

Buffer;
BufferLength;
Xferlnfo;
MaxIntDelay;
ShortXferOk;
Setup[8];
Status;
HcdList;

} USBD_REQUEST, *PUSBD_REQUEST;

Table5-5: USBD_REQUEST

Field Description
Buffer Pointer to data to be transferred
BufferLength Length of data buffer in bytes
Xferlnfo Direction (In/Out) for control and bulk
MaxIntDelay Maximum allowable delay from completion to completion notification to USBD
ShortXferOk Transfer of less than BufferLength is to be treated as an error unless this is TRUE
Setup Data for setup packet (control endpoints only)
Status Completion status from HCD to USBD
HcdList List of all HCDiTRANSFERiDESCRIPTORs in use for this request

11

/I Each Host Controller Endpoint Descriptor is also doubly linked into alist tracked by HCD.
/l Each ED queue is managed viaanHCD_ED_LIST

11

typedef struct HCD_ED_LIST {

LIST_ENTRY
PULONG
USHORT
UCHAR
UCHAR

Head,
PhysicalHead,;
Bandwidth;
Next;
Reserved;

} HCD_ED_LIST, *PHCD_ED_LIST;

OpenHCI - Open Host Contraller Interface Specification for USB

Table5-6: HCD_ED_LIST

Field Description
Head Head of an HCD ENDPOINT DESCRIPTOR list
PhysicalHead Address of location to put the physical head pointer when it
changes
Bandwidth Allocated bandwidth on this timeslice. Bandwidth is allocated on

a per HCD_ENDPOINT basis, so this value may exceed the
bandwidth scheduled in the ED list.

Next

Index to the next HCD ED LIST for this timeslice

1

/l Thedifferent ED lists are as follows.

1

#define ED_INTERRUPT_1ms
#define ED_INTERRUPT_2ms
#define ED_INTERRUPT_4ms
#define ED_INTERRUPT_8ms
#define ED_INTERRUPT_16ms
#define ED_INTERRUPT_32ms
#define ED_CONTROL
#define ED_BULK

#define ED_ISOCHRONOUS
#define NO_ED_LISTS
#define ED_EOF

1!
/I HCD Device Data
1!

/I same as 1ms interrupt queue

o Wk NWwEFk O
FORBRG

typedef struct_HCD_DEVICE_DATA{
PHC_OPERATIONAL_REGISTER HC;

PHCCA_BLOCK
LIST_ENTRY
LIST_ENTRY
LIST_ENTRY
LIST_ENTRY
LIST_ENTRY
LIST_ENTRY
HCD_ED_LIST
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
BOOLEAN
BOOLEAN

HCCA,;
Endpoints;
FreeED;
FreeTD;
StalledEDReclamation;
RunningEDReclamation;
PausedEDRestart;
EdListfNO_ED_LIST];
FrameHighPart;
AvailableBandwidth;
MaxBandwidthlnUseg;
SOCount;
SOStallFrame;
SOLimitFrame;
SOLimitHit;
SOStallHit;

} HCD_DEVICE_DATA, *PHCD_DEVICE _DATA;

55

OpenHCI - Open Host Contraller Interface Specification for USB

Table5-7: HCD_DEVICE_DATA

Field Description
HC Pointer to the HC operational registers. See Section 7
HCCA Pointer to the shared memory HCCA block. See Section
4.4
Endpoints List of connected HCD_ENDPOINT structures in FIFO order.
FreeED List of free HCD _ENDPOINT DESCRIPTOR structures.
FreeTD List of free HCD_TRANSFER_DESCRIPTOR structures.

StalledEDRaclamation List of HCD_ENDPOINT_DESCRIPTORs which are to be
freed once HC list processing is suspend

RunningEDReclamation List of HCD_ENDPOINT_DESCRIPTORSs which are to be
freed based on their ReclamationFrame.

PausedEDRestart List of HCD_ENDPOINT_DESCRIPTORSs which are to be
restarted after canceled HCD_TRANSFER_DESCRIPTORs
are removed.

EdList Active HCD_ENDPOINT_DESCRIPTOR lists. This list
represents:
1 list for isochronous and 1ms interrupt polling
2 interrupt lists for polling at 2 ms each
4 interrupt lists for polling at 4 ms each
8 interrupt lists for polling at 8 ms each
1 interrupt lists for polling at 16 ms each
6
3 interrupt lists for polling at 32 ms each
2
1 list for control
_1 list for bulk
65 total ED lists
FrameHighPart Upper bits of 32-bit frame number
Available-Bandwidth Bandwidth supported by this HC
MaxBandwidth-InUse Maximum bandwidth which is currently allocated in any
given scheduling timeslice
SOCount Schedule Overrun count
SOStallFrame Schedule Overrun for Stall count starts at this frame
SOLimitFrame Schedule Overrun for bandwidth limit adjust starts at this
frame
SOLimitHit Schedule Overrun for a limit condition was hit
SOStallHit Schedule Overrun for a stall condition was hit

56

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.7 Endpoint Descriptor Lists

The following sections describe Host Controller Driver handling of Endpoint Descriptors. In al cases,
Hogt Controller Driver isresponsble for the insertion and remova of al Endpoint Descriptorsin the
various Host Controller Endpoint Descriptor lists. Each subsection will outline how thisis done for the
various Host Controller endpoint lists.

The EdLig array in the Host Controller Driver device data structure isinitidized at Host Controller
Driver initidization such that dl Heed fidds are properly initidized to be NULL ligts

and each PhysicaHead field contains the address to where the physical head pointer of theeach list is
maintained. Thiswould be the address of either aHCD_ENDPOINT_DESCRIPTOR.HCED.NexteED
field, Hecal nterruptTable[n], the HcControlHeadED regigter, or the HcBulkHeadED register.

5.2.7.1 Bulk and Control

The Host Controller has alist head for both bulk and control transfers. Each Endpoint Descriptor list is
aspaae lig, but its maintenance semantics are the same for Host Controller Driver.

The ED_CONTROL and ED_BULK entries of the EdList array are assumed to be initidized at Host
Controller Driver initidization time such thet the list Heed fidd isinitidized to anull ligt and the
PhysicaHead field contains the address of the proper list head operationa register.

5.2.7.1.1 Adding

When an Endpoint Descriptor is scheduled to ether control or bulk, it is done by inserting a
HCD_ENDPOINT _DESCRIPTOR into the proper HCD_ED_LIST.Head and then linking the
HCD_ENDPOINT_DESCRIPTOR.HcEd into HCD_ED_LIST.PhysicaHead.

VOID
InsertEDForEndpoaint (
IN PHCD_ENDPOINT Endpoint
)
{
PHCD_DEVICE DATA DeviceData;
PHCD_ED LIST List;

PHCD_ENDPOINT_DESCRIPTOR ED, TalED;

DeviceData = Endpoint->DeviceData;
List = & DeviceData->EdL ist[Endpoint->ListIndex];

57

OpenHCI - Open Host Contraller Interface Specification for USB

I

/l'Initialize an endpoint descriptor for this endpoint

I

ED = AllocateEndpointDescriptor(DeviceData);

ED->Endpoint = Endpoint;

ED->ListIndex = Endpoint->ListIndex;

ED->Physical Address = Physical AddressOf (& ED ->HcED);
ED->HcED.Control = Endpoint->Control;

Endpoint->HcdHeadP = AllocateTransferDescriptor(DeviceData);
ED->HcED.HeadP = Physical AddressOf (& Endpoint->HcdHeadP->HcTD);
Endpoint->HcdHeadP->Physical Address = ED ->HcED. TailP = ED->HcED.HeadP,
Endpoint->HcdED = ED;

ED->HcdHeadP->UsbdRequest = NULL;

I

/I Link endpoint descriptor into HCD tracking queue

I

if (Endpoint->Type!= Isochronous || IsListEmpty(& List->Head))) {
I
/l Link ED into head of ED list
I

InsertHeadL ist (& List->Head, & ED->Link);

ED->HCED.NextED = *Lig->PhysicaHead;

*List->PhysicadHead = ED->Physical Address;

} else{

I

/I Link ED into tail of ED list

I

TalED = CONTAINING_RECORD (
List->Head.Blink,
HCD_ENDPOINT_DESCRIPTOR,
Link);

InsertTailList (&List->Head, & Endpoint->Link);
ED->NextED =0;
TalED->NextED = ED->Physical Address;

Note: The above function iswritten in a generic manner since other endpoint typeswill dso useit as
their fundamenta way to enqueue an Endpoint Descriptor.

58

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.7.1.2 Removing
An Endpoint Descriptor is removed from a control or bulk list when the pipe on the endpoint is closed.
Removing an Endpoint Descriptor involves correctly modifying the physical pointers being processed by
the Host Controller to point around the Endpoint Descriptor being removed. Thisis accomplished by
utilizing the virtua doubly-linked list which Host Controller Driver maintains for Endpoint Descriptorsin
itsHCD_ENDPOINT_DESCRIPTOR structure.

@@ @

Figure 5-3: Removing an Endpoint Descriptor

As s00n as the Endpoint Descriptor is removed from the physicd lig, it isfreed from its corresponding
endpoint structure. However, the actua memory for the Endpoint Descriptor cannot be reclaimed until
it is known that the Host Controller is no longer referencing the Endpoint Descriptor. After the
Endpoint Descriptor is removed from the lig, it must be flushed from the Host Controller. The manner
in which thisis accomplished varies depending the type of list being modified.

For control and bulk, the flush is done by clearing the appropriate bit in HcControl to hat the Host
Controller from processing ether the control or bulk list on the next frame. Once the next frame has
started, the HcControl CurrentED or HcBulkCurrentED register should be adjusted so that it does
not point to the Endpoint Descriptor being removed (for smplicity you may just write a zero to the
register); the Endpoint Descriptor is now free and Host Controller Driver immediately sets the
gppropriate bit in HcControl to continue the list processng.

VOID

RemoveED (
IN PHCD_ENDPOINT Endpoint,
IN BOOLEAN FreeED
)

{
PHCD_DEVICE DATA DeviceData;
PHCD_ED _LIST List;
PHCD_ENDPOINT_DESCRIPTOR ED, PeviousED;
ULONG ListDisable;

DeviceData = Endpoint->DeviceData;
List = & DeviceData->EdList[Endpoint->Listindex];
ED = Endpoint->HcdED,;

59

OpenHCI - Open Host Contraller Interface Specification for USB

I

/I Prevent Host Controller from processing this ED
I

ED->HcED.Control.sKip = TRUE;

1
/1 Unlink the ED from the physical ED list
1
if (ED->Link.Blink == & List>Head) {
1
/I Remove ED from head
1
* List->PhysicalHead = ED->HcED.NextED;
PreviousED = NULL;
}else{
1
/I Remove ED from list
1
PreviousED = CONTAINING_RECORD (
ED->Link.Blink,
HCD_ENDPOINT,
Link);
PreviousED ->HcED.NextED = ED->HcED.NextED;
}

I

/l Unlink ED from HCD list

I

RemoveEntryList (& ED->Link);

I

/' freeing the endpoint, remove the descriptor

I

if (FreeED) { /I TD queue must already be empty
Endpoint->HcdED = NULL;
ED->Endpoint = NULL;

60

OpenHCI - Open Host Contraller Interface Specification for USB

I
/I Check to seeif interrupt processing isrequired to free the ED
I
switch (Endpoint->Type) {
case Control:
ListDisable = ~ControlListEnable;
break;
case Bulk:
ListDisable = ~BulkListEnable;
break;
default:
DeviceData->EDL.ist[Endpoint->ListIndex].Bandwidth -= Endpoint->Bandwidth;
DeviceData->M axBandwidthinUse = CheckBandwidth(DeviceData,
ED_INTERRUPT_32ms,

&ListDisable);
ListDisable=0;
}
ED->Listindex = ED_EOF; /I ED isnot on alist now
I
Il Set ED for reclamation

I
DeviceData->HC->HclnterruptStatus = HC_INT_SOF; // clear SOF interrupt pending
if (ListDisable) {

DeviceData->HC->HcControl &= ListDisable;

ED->ReclaimationFrame = Get32BitFrameNumber(DeviceData) + 1;

InsertTailList (& DeviceData->StaledEDReclamation, & ED->Link);

DeviceData->HC-> HclnterruptEnable = HC_INT_SOF; // interrupt on next SOF
} else{

ED->ReclaimationFrame = Get32BitFrameNumber(DeviceData) + 1;

InsertTailList (& DeviceData->RunningEDReclamation, & ED ->Link);

By disabling the ligt processng in the HcControl register, the Host Controller disables processing of the
list by the next EOF. Unmasking the SOF interrupt generates an interrupt status which signifieslist
processing has now been disabled. During the response to this interrupt event, the Host Controller
Driver reclams the Endpoint Descriptor. See Section 5.3 for more information on Host Controller
Driver interrupt processng.

61

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.7.1.3 Pause

When a Transfer Descriptor is retired with an error or when the upper layers of software desire to
cancel atransfer request, al Transfer Descriptors associated with the same request must be removed
from the queue of transfers on the endpoint. To do this, processing of the endpoint by the Host
Controller must be paused before the Host Controller Driver can remove or otherwise ater the Transfer
Descriptors on the endpoint’s queue. There are two ways that this is accomplished, depending on the
reason for pausing the endpoaint:

?? When the Host Controller retires a Transfer Descriptor with an error, it automaticaly pauses
processing for that endpoint by setting the Halt bit in HC_ENDPOINT_DESCRIPTOR.HeadP.

?? When the upper layers of softwareinitiate a cancel of arequest, Host Controller Driver must set the
HC_ENDPOINT_DESCRIPTOR.Control.sKip bit and then ensure that the Host Controller is not
processing that endpoint. After setting the bit, Host Controller Driver must wait for the next frame
before the endpoint is paused.

VQOID
PauseED(
IN PCHD_ENDPOINT Endpoint
)
{
PHCD_DEVICE_DATA DeviceData;

PHCD_ENDPOINT_DESCRIPTOR ED;

DeviceData = Endpoint->DeviceData;
ED = Endpoint->HcdED;

ED->HcED.Control.sKip = TRUE;

if (ED->PausedFlag)
return; /I already awaiting pause processing

if (!(ED->HcED.HeadP & HcEDHeadP HALT)) {
1
/I Endpoint is activein Host Controller, wait for SOF before processing the endpoint.
1
ED->PausedFlag = TRUE;
DeviceData->HC->HclnterruptStatus = HC _INT_SOF; // clear SOF interrupt pending
ED->ReclaimationFrame = Get32BitFrameNumber(DeviceData) + 1;
InsertTailList (& DeviceData->PausedEDRestart, & ED->PausedLink);
DeviceData->HC-> HclnterruptEnable = HC_INT_SOF; // interrupt on next SOF
return;

62

OpenHCI - Open Host Contraller Interface Specification for USB

I

/I Endpoint already paused, do processing now
I

ProcessPausedED(ED);

}

VOID

ProcessPausedED (
PHCD_ENDPOINT_DESCRIPTOR ED
)

PHCD_ENDPOINT endpoint;
PUSBD_REQUEST request;
PHCD_TRANSFER_DESCRIPTOR td, last = NULL, *previous;
BOOLEAN B4Head = TRUE;

endpoint = ED->Endpoint;
if (endpoint == NULL)
return;

td = endpoint->HcdHeadP,
previous = & endpoint->HcdHeadP,
while (td != endpoint->HcdTailP) {
if (ED->HcED.HeadP & ~0xF) == td->Physical Address)
B4Head = FALSE;
if (ED->Listindex == ED_EOF || td->Cancel Pending) { // cancel TD
request = td->UsbhdRequest;
RemovelListEntry(&td->RequestList);
if (IsListEmpty(& request->HcdList) {
request->Status = USBD_CANCELED;
CompleteUsbdRequest(request);
}
*previous = td->NextHcdTD; /I point around TD
if (last '= NULL)
|ast->HCcED.NextTD = td->HcED.NextTD;
if (B4Head) /I TD on delayed Done List
td->Status= TD_CANCELED;
else
FreeTransferDescriptor(td);
} else{ // don’t cancel TD
previous = & td->NextHcdTD;
if (!B4Head)
last = td;
}
td = *previous;

}

ED->HcED.HeadP = endpoint->HcdHeadP->Physical Address | (ED->HcED.HeadP & HcEDHeadP_CARRY);
ED->HcED.Control.sKip = FALSE;

63

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.7.2 Interrupt

The Host Controller processes one interrupt Endpoint Descriptor list every frame. The lower five bits
of the current frame number is used as an index into an array of 32 interrupt Endpoint Descriptor lists
found inthe HCCA. Thismeanseach ligt isrevidted once every 32 ms. Host Controller Driver utilizes
the Host Controller dgorithm to provide flexible interrupt transfer scheduling. Host Controller Driver
sets up the interrupt lists to vidt any given Endpoint Descriptor in as many interrupt lists as necessary to
provide the interrupt granularity required for that endpoint. For example, Figure 5-4 shows the 32
interrupts lists, with 63 Endpoint Descriptors where 1 Endpoint Descriptor is visted every frame, 2
Endpoint Descriptors are visited once every 2 frames, until findly 32 different Endpoint Descriptors are
vidted once every 32 frames.

vvvvvvvyvyvyvyvy
\/ \/’ \/’ \/’

! - 1 endpoint descriptor for 1ms scheduling
R R EEEEEEEEEE 2 endpoint descriptors for 2ms scheduling
, R 4 endpoint descriptors for 4ms scheduling
A 8 endpoint descriptors for 8ms scheduling
ke 16 endpoint descriptors for 16ms scheduling
Frrrrrrrrrrserssrosroonsossossosscoscssoesces 32 interrupt head pointersin HCCA for 32ms
scheduling

Figure5-4: Structureof Interrupt Lists

An important point of thislist structure is that an endpoint may be pointed to by more than one
preceding endpoint. In the sample Endpoint Descriptor definition, Endpoint Descriptors are tracked by
Host Controller Driver with a doubly-linked list which has only one back pointer. Thisisimplemented
by building the interrupt Endpoint Descriptor list shown in Figure 5-4 at Host Controller Driver
initidization time with disabled Endpoint Descriptors. These disabled descriptors are used to populate
the tree and are gatic. Thisimplementation is used here to amplify the sample code; it is possble to
implement the interrupt lists without the saticaly disabled Endpoint Descriptors if the Host Controller
Driver maintains multiple backward links for each Endpoint Descriptor. Asillustrated in Figure 5-5, this
gives Host Controller Driver 63 different scheduling ligts into which it can schedule active Endpoint
Descriptors. And since the disabled Endpoint Descriptors are static, Host Controller Driver can
maintain thiswith a doubly-linked list.

OpenHCI - Open Host Contraller Interface Specification for USB

S173dn1BW| WOOH

B 50®O%

© - statically disable endpoint
descriptor

ig)j—O—O \ O - active endpoint descriptor

: ﬁw/

02
12

zzmm/

lE
01
11

zzmm/

lD
03
13

éE WW/

‘32ms‘ ‘les‘ ‘Sms‘

"

‘ ams ‘ 2ms 1ms

Figure 5-5: Runtime Structure of Interrupt Lists

65

OpenHCI - Open Host Contraller Interface Specification for USB

The head of each scheduling ligt is ether the static entry for that list or one of the 32 list headsin the
HCCA area. Thisinitidization is accomplished as follows:

VOID
InitailizelnterruptLists (
IN PHCD_DEVICE_DATA DeviceData
)
{
PHC_ENDPOINT_DESCRIPTOR ED, StaticED[ED_INTERRUPT _32mg];
ULONG Lk
static UCHAR Balance[16] =

{Ox0, Ox8, Ox4, OxC, Ox2, OxA, 0x6, OXE, Ox1, Ox9, Ox5, OxD, 0x3, OxB, Ox7, OxF};

I
/I Allocate satirically disabled EDs, and set head pointers for scheduling lists
I
for (i=0; i < ED_INTERRUPT_32ms; i+) {
ED = AllocateEndpointDescriptor (DeviceData);
ED->Physical Address = Physical AddressOf (& ED ->HcED);
DeviceData->EDL.igt[i].PhysicaHead = & ED ->HCcED.NextED;
ED->HcED.Control |=sKip; // mark ED asdisabled
InitializeListHead (& DeviceData->EDL ist[i].Head);
StaticED[i] = ED;
if (>0){
DeviceData->EDLid][i].Next = (i-1)/2;
ED->HcED.NextED = StaticED[(i-1)/2]->Physical Address;
} else{
DeviceData->EDLig][i].Next = ED_EOF;
ED->HcEd.NextED =0

}

I

/I Set head pointers for 32ms scheduling lists which start from HCCA

I

for (i=0, j=ED_INTERRUPT _32ms, i<32; i++, j++) {
DeviceData->EDL.ist[j].PhysicalHead = & DeviceData->HCCA ->InterruptList[i];
InitializeListHead (& DeviceData->EDL ist[j].Head);
k = Bdancd]i & OxF] + ED_INTERRUPT_16ms;
DeviceData->EDLigt[j].Next = k;
DeviceData->HCCA ->InterruptList[i] = StaticED[K]->Physical Address;

66

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.7.2.1 Polling Rate

Interrupt Endpoint Descriptors have a minimum rate for which they need to be scheduled. When this

information is provided to Host Controller Driver, it determines the closest power of 2 rate below the

endpoints requirement and determines which scheduling queue for that rate has the smallest committed
bandwidth. The endpoint is then assgned to that scheduling list.

USB_STATUS
OpenPipe (
IN PHCD_ENDPOINT
)

ULONG

PHCD_DEVICE_DATA

Endpoint

WhichList, junk;
DeviceData;

DeviceData = Endpoint->DeviceData;

1

/I Determine the scheduling period.

1

WhichList = ED_INTERRUPT_32ms;
while (WhichList >= Endpoint->Rate & & (WhichList >>=1))

continue;

1

/I Commit this endpoints bandwidth to the proper scheduling slot

1

if (WhichList == ED_ISOCHRONOUS) {
DeviceData->EDLIst{ED_ISOCHRONOUS].Bandwidth += Endpoint->Bandwidth;
DeviceData->M axBandwidthlnUse += Endpoint->Bandwidth;

}else{
"

/I Determine which scheduling list has the least bandwidth

1

CheckBandwidth(DeviceData, WhichList, & WhichList);
DeviceData->EDL ist[WhichList].Bandwidth += Endpoint->Bandwidth;

1

/I Recalculate the max bandwidth whichisinuse. Thisallows 1ms (isoc) pipe opensto
/I occur with few calculation

1

DeviceData->MaxBandwidthinUse =
CheckBandwidth(DeviceData, ED_INTERRUPT_32ms, &junk);

67

OpenHCI - Open Host Contraller Interface Specification for USB

1

/I Verify the new max has not overcomitted the USB

I

if (DeviceData->MaxBandwidthinUse > DeviceData->AvailableBandwidth) {
I
/I Too much, back this bandwidth out and fail the request
I
DeviceData->EDL ist[WhichList].Bandwidth -= Endpoint->Bandwidth;
DeviceData->MaxBandwidthinUse =

CheckBandwidth(DeviceData, ED_INTERRUPT_32ms, &junk);

return CAN_NOT_COMMIT_BANDWIDTH;

}

I

/I Assign endpoint to list and open pipe
I

Endpoint->Listindex = WhichList;

I

/I Add to Host Controller schedul e processing
I

InsertEDForEndpoint (Endpoint);

}
ULONG
CheckBandwidth (
IN PHCD_DEVICE_DATA DeviceData,
IN ULONG List,
IN PULONG BestList
)
[*++
Thisroutine scans all the scheduling lists of frequency determined by the base List passed in and returns the
worst bandwidth found (i.e., max in use by any given scheduling list) and the list which had the |east bandwidth
inuse.
List - must be abase scheduling list. I.e., it must be one of ED_INTERRUPT_1ms, ED_INTERRUPT_2ms,
ED_INTERRUPT_4ms, ..., ED_INTERRUPT_32ms.
All lists of the appropriate frequency are checked
i
{
ULONG LastList, Index;
ULONG BestBandwidth, WorstBandwidth;

WorstBandwidth = 0;
BestBandwidth = ~0;

68

OpenHCI - Open Host Contraller Interface Specification for USB

for (LastList = List + List; List <= LastList; List ++) {

I

/I Sum bandwidth in usein this scheduling time

I

Bandwidth = 0;

for (Index=List; Index != ED_EOF; Index = DeviceData->EDL.ist[Index].Next) {
Bandwidth += DeviceData->EDL.ist[index].Bandwidth;

}

1

/I Remember best and worst

1

if (Bandwidth < BestBandwidth) {
BestBandwidth = Bandwidth;
*BestList = List;

}

if (Bandwidth > WorstBandwidth) {
WorstBandwidth = Bandwidth;

}
}

return WorstBandwidth;

5.2.7.2.2 Adding

Like control, bulk, and isochronous, interrupt Endpoint Descriptors are added to the Host Controller list
for processing when the pipe on the endpoint is opened. This needs to be done after the palling policy
and bandwidth for the interrupt endpoint has been set. See the same sample code in Section 5.2.7.1.1.

5.2.7.2.3 Removing

Since the Hogt Controller is obligated to process the periodic endpoint list for any given timedice,
remova of an interrupt Endpoint Descriptor from the schedule can be accomplished without interrupting
the HC. The Endpoint Descriptor is removed from its corresponding endpoint list much the same way
abulk or control Endpoint Descriptor is removed, except that the processing of the endpoint list is not
ddled. Ingtead, the Endpoint Descriptor is put off the RunningEDReclamation list and is reclaimed at
some frame number in the future. For “freeing” of an endpoint, its Endpoint Descriptor is not reclaimed
at a specific time, just whenever the next Host Controller interrupt processing occurs. For other
operations which required an interrupt Endpoint Descriptor to be removed, like cancding of atransfer
descriptor, an interrupt is forced at next SOF to ensure timely cleanup.

69

OpenHCI - Open Host Contraller Interface Specification for USB

VOID
Unschedul el sochronousOrInterruptEndpoint (
IN PHCD_ENDPOINT Endpoint,
IN BOOLEAN FreeED,
IN BOOLEAN EndpointProcessingRequired
)
{
PHCD_DEVICE DATA DeviceData;

DeviceData = Endpoint->DeviceData;
RemoveED(Endpoint, FreeED); /I see sample code in Section5.2.7.1.2.

if (EndpointProcessingRequired) {
DeviceData->HC-> HclnterruptEnable = HC_INT_SOF; // interrupt on next SOF

}
}

During response to an interrupt event, Host Controller Driver would reclam the available running
Endpoint Descriptor list. See Section 5.3 for more information on Host Controller Driver interrupt
processing.

5.2.7.2.4 Pause

Like control, bulk, and isochronous, when an interrupt Transfer Descriptor isretired with an error or
when the upper layers of software desire to cancel atransfer request, al Transfer Descriptors
associated with the same request must be removed from the queue of transfers on the endpoint. To do
this, processing of the endpoint by the Host Controller must be paused before the Host Controller
Driver can remove or otherwise ater the Transfer Descriptors on the endpoint’s queue. See Section
5.2.7.1.3 for acomplete description.

5.2.7.3 Isochronous

Endpoint Descriptor management treats |sochronous Endpoint Descriptors just like 1-msinterrupt
endpoints descriptors, except that they are added to thetail of the 1-msinterrupt list. This keepsthe 1-
ms scheduling list sorted such that 1-msinterrupt polling Endpoint Descriptors are listed before
scheduled Isochronous Endpoint Descriptors. An isochronous endpoint could be setup by:

Status = SetEndpointPolicies (

Endpoint,

Isochronous, Il Type

1, /l Rateis1ms
Bandwidth /I BandwidthRequired

70

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.7.3.1 Adding

Like control, bulk, and interrupt, Isochronous Endpoint Descriptors are added to the Host Controller
list for processing when the endpoint pipe is opened. This needs to be done after the bandwidth for the
isochronous endpoint has been committed for the endpoint. See code samplesin Sections5.2.7.1.1
and5.2.7.2.1.

5.2.7.3.2 Removing

Isochronous Endpoint Descriptors are removed the same way as interrupt Endpoint Descriptors are
removed. See Section 5.2.7.2.3.

5.2.7.3.3 Pause

Unlike control, bulk, and interrupt, Isochronous Transfer Descriptors are never retired with an error.
However, smilar to control, bulk, and interrupt, when the upper layers of software desire to cance an
isochronous transfer request, al Transfer Descriptors associated with the same request must be
removed from the queue of transfers on the endpoint. To do this, processing of the endpoint by the Host
Controller must be paused before the Host Controller Driver can remove or otherwise ater the Transfer
Descriptors on the endpoint’ s queue. See Section 5.2.7.1.3 for a complete description.

5.2.8 Transfer Descriptor Queues
5.2.8.1 The NULL or Empty Queue

The NULL queueis setup by givingaHead pointer and a Tail pointer the samevalid vaue. This
means that an empty queue has an alocated entry structure appropriate for that queue type waiting to
befilled in. Thisentry isaplace holder.

HCD ED
=D HCD TD #1
TailP
TD *
NextTD >
To be
filled in

Figure5-6: An Empty Transfer Descriptor Queue

71

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.8.2 Addingto a Queue

Additions into trandfer queues are dways done by copying the new entry information to the entry at the
tail of the queue and then appending anew tail entry to the queue. Thisis accomplished by:
1. Copying the new information to the entry pointed to by TailP
2. Setingthe NextTD pointer in the current tail entry to a new place holder
3. Advancing the TailP pointer to the new place holder
4. Writing to the ControlListFilled or BulkListFilled bit in HcCommandStatus if the insert
was to a queue on the Control list or Bulk lit.

HCD ED
ED 3
HCD TD #1 HCD TD #2
TailP/ ™) k‘
L L
NextTD Now ! To be
filled in filled in

Figure5-7: Adding a Transfer Descriptor to a Queue

A limitation of thisimplementation is that there is dways an unused entry a the tail of aqueue. For
queued requests, the Host Controller Driver needs to trand ate the USBD-passed entries into the native
OpenHCI Transfer Descriptor entries which contain a back pointer to their corresponding USBD
request.

72

OpenHCI - Open Host Contraller Interface Specification for USB

The following code sample shows how the Host Controller Driver may convert USBD requests into
Generd Trandfer Descriptors (the process for 1sochronous Transfer Descriptorsis smilar, but left asan
exercise to the reader).

BOOLEAN
QueueGeneral Request (
IN PHCD_ENDPOINT endpoint;
IN USBD_REQUEST request;
)
{
PHCD_DEVICE DATA DeviceData;

PHCD_ENDPOINT_DESCRIPTOR ED;
PHCD_TRANSFER_DESCRIPTOR TD, LastTD = NULL,;

ULONG RemainingL ength, count;
PCHAR CurrentBufferPointer;

DeviceData = endpoint->DeviceData;
ED = endpoint->HcdED;
if (ED == NULL || ED->ListIndex == ED_EOF)
return(FAL SE); /I endpoint has been removed from schedule.

FirstTD = TD = endpoint->HcdHeadP;

request->Status= USBD_NOT_DONE;

RemainingLength = request->BufferLength;

request->BufferLength = 0; /I report back bytes transferred so far
CurrentBufferPointer = request->Buffer;

InitializeListHead(& request->HcdList);

if (endpoint->Type == Contral) {
1
/I Setup a TD for setup packet
1
InsertTailList(&request->HcdList, & TD->RequestList);
TD->UsbdRequest = request;
TD->Endpoint = endpoint;
TD->CancelPending = FALSE;
TD->HcTD.CBP = Physical AddressOf (& request->setup[0]);
TD->HcTD.BE = Physical AddressOf (& request->setup[7]);
TD->TransferCount = 0;
TD->HcTD.Control.DP = request->SETUP,
TD->HcTD.Control.Toggle = 2;
TD->HcTD.Control.R = TRUE;
TD->HcTD.Control.IntD =7, /I specify no interrupt
TD->HcTD.Control.CC = NotAccessed;
TD->NextHcdTD = AllocateTransferDescriptor(DeviceData);
TD->NextHcdTD->PhysicalAddress = TD->HcTd.NextTD =

Physical AddressOf (& TD->NextHcdTD->HcTD);

LastTD =TD;
TD = TD->NextHcdTD;

73

OpenHCI - Open Host Contraller Interface Specification for USB

I
/I Setup TD(s) for data packets
I
while (RemainingLength || (LastTD == NULL)) {
InsertTailList(&request->HcdList, & TD->RequestList);
TD->UshdRequest = request;
TD->Endpoint = endpoint;
TD->CancelPending = FALSE;
if (RemainingLength) {
TD->HcTD.CBP = Physical AddressOf (CurrentBufferPointer);
count = 0x00002000 - (TD->HcTD.CBP & 0x00000FFF);
if (count < RemainingLength) {
count -= count % endpoint->M axPacket;
} else{
count = RemainingL ength;
}
CurrentBufferPointer += count - 1;
TD->HcTD.BE = Physical AddressOf (CurrentBufferPointer++);
} else{
TD->HcTD.CBP = TD->HcTD.BE = count = 0;
}
TD->TransferCount = count;
TD->HcTD.Control.DP = request->XferInfo;
if (endpoint->Type == Control) {
TD->HcTD.Control.Toggle=3;
} else{
TD->HcTD.Control. Toggle =0;
}
if (RemainingLength-= count & & !request->ShortXferOk) {
TD->HcTD.Control.R = TRUE;
} else{
TD->HcTD.Control.R = FALSE;
}
TD->HcTD.Control.IntD = 7; /1 specify no interrupt
TD->HcTD.Control .CC = NotA ccessed;
TD->NextHcdTD = AllocateTransferDescriptor(DeviceData);
TD->NextHcdTD->PhysicalAddress = TD->HcTd.NextTD =
Physical AddressOf (& TD->NextHedTD->HcTD);
LastTD =TD;
TD = TD->NextHcdTD;

74

OpenHCI - Open Host Contraller Interface Specification for USB

if (endpoint->Type == Control) {
I
/I Setup TD for status phase
I
InsertTailList(&request->HcdList, & TD->RequestList);
TD->Endpoint = endpoint;
TD->UshdRequest = request;
TD->CancelPending = FALSE;
TD->HcTD.CBP=0;
TD->HcTD.BE=0;
TD->TransferCount = 0;
if (Xferinfo==1IN) {
TD->HcTD.Control.DP = OUT;
} else{
TD->HcTD.ControlDP = IN:
}
TD->HcTD.Control.Toggle=3;
TD->HcTD.Control.R = FALSE;
TD->HcTD.Control.IntD = 7; /1 specify no interrupt
TD->HcTD.Control .CC = NotA ccessed;
TD->NextHcdTD = AllocateTransferDescriptor(DeviceData);
TD->NextHcdTD->PhysicalAddress = TD->HcTd.NextTD =
Physical AddressOf (& TD->NextHedTD->HcTD);
LastTD =TD;
TD = TD->NextHcdTD;
}

I

/I Setup interrupt delay

I

LastTD->HcTD.Control.IntD = min(6, request->MaxIntDelay);

I

/I Set new TalPin ED

I

TD->UsbdRequest = NULL;
endpoint->HcdTalP=TD,;
ED->HcED.TailP = TD->Physical Address;

switch (endpoint->Type) {
case Control:
DeviceData->HC->HcCommandStatus = Control ListFilled;
break;
case Bulk:
DeviceData->HC->HcCommandStatus = BulkListFilled;

}
return(TRUE);

75

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.8.3 Removing from a Queue

Entries are typicaly removed from queues by the Host Controller upon completion of the Transfer
Descriptor. At this point, the Host Controller adds the Transfer Descriptor to the Done Queue. When
the Host Controller completes the Transfer Descriptor, it performs these steps:
1. Updatesthe NextTD pointer in the Endpoint Descriptor with the value from the NextTD in
the Transfer Descriptor just completed.
2. Copiesthe vaue in HcDoneHead to the NextTD pointer in the completed Transfer
Descriptor.
3. Placesapointer to the completed Transfer Descriptor into HcDoneHead.

HCD ED
ED HCD TD #1 HCD TD #2
TailP / ™D k‘
NextTD Now To be
complete filled in
HCD TD #n
\TD
HcDoneHead B \ULL
Now
complete

Figure5-8: Host Controller Removesa Transfer Descriptor from a Queue

Note that in the norma case, the Host Controller Driver does not in any way ater a Transfer Descriptor
between the time TailP is moved to point beyond it until the Host Controller returns the Transfer
Descriptor for Done processing. If the driver needs to modify a Transfer Descriptor once it has been
given to the HC, it must use the cancel procedure described in the next section.

76

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.8.4 Cancel

In order to cancel Transfer Descriptors that have been passed to the Host Controller for processing
(i.e., Transfer Descriptors on a queue prior to TailP), the driver must first ensure that the queue is not
being processed by the HC. If a Transfer Descriptor was completed with an error, then the Host
Controller will have stopped processing the queue asindicated by the H bit in the Endpoint Descriptor;
otherwise, the driver must stop the processing of the queue by setting the sKip bit in the Endpoint
Descriptor and waiting for the next SOF. (It is necessary to wait for the next SOF after setting the sKip
bit because it is possible that the Host Controller is currently in the process of servicing the endpoint.)
Once the queue is stopped, then the driver may dter or remove any of the Transfer Descriptorsin the
queue as well as update the NextTD and TailP pointers in the Endpoint Descriptor. When the driver
has finished updating the queue, it re-enables processing of the queue by clearing both the Halt and
sKip bitsin the Endpoint Descriptor.

BOOLEAN
CancelRequest (
IN PUSBD_REQUEST reguest,

)

PHCD_TRANSFER_DESCRIPTOR TD;
PHCD_ENDPOINT endpoint

11
/I'If request statusis ‘not done’ set statusto ‘ canceling’
11
if (request->Status!= UDBD_NOT_DONE)
return FALSE; /I cannot cancel a completed request
request->Status = USBD_CANCELING;

TD = CONTAINING_RECORD(
request->HcdList.FLink,
HCD_TRANSFER _DESCRIPTOR,
RequestList);

while (TRUE) {

TD->CancelPending = TRUE;

if (TD->RequestList.FLink == request->HcdList.BLink)

break;

TD = CONTAINING_RECORD(
TD->RequestList.FLinK,
HCD_TRANSFER _DESCRIPTOR,
RequestList);

}

endpoint = TD->Endpoint;
PauseED (endpoint); /I stop endpoint, schedule cleanup (see Section5.2.7.1.3)
return TRUE;

77

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.9 Done Queue

The Done Queue is built by the Host Controller as each Transfer Descriptor is completed. The Host
Controller |ater passes the queue to the Host Controller Driver through the HCCA. The Host
Controller Driver must reverse the order of the queue as it converts the physica addresses in the queue
to virtud addressesthat can be used by software. Once the queueis reversed, it can be processed in
the order that the Transfer Descriptors were completed. This processng must account for Transfer
Descriptors that have been completed normally as well as those thet are completed with errors. Some
of the Transfer Descriptors completed with Data Underrun errors are not considered as errors by the
upper layers of the USB software and must be handled by Host Controller Driver. Additiondly, the
Hogt Controller Driver must dlow for the possibility that the Transfer Descriptor only accounts for a
portion of the origind transfer request from the USB Diriver.

VOID
ProcessDoneQueue (
ULONG physHcTD // HccaDoneHead

)

PHCD_TRANSFER DESCRIPTOR TD, tn, TDlist=NULL;
PUSBD_REQUEST Request;
PHCD_ENDPOINT Endpoint;

11
/I Reverse the queue passed from controller while virtualizing addresses.
/I NOTE: Thefollowing code assumes that a ULONG and a pointer are the same size
11
if (physHcTD ==0)
return;
do{
TD = CONTAINING_RECORD(
Virtual AddressOf (physHcTD),
HCD_TRANSFER_DESCRIPTOR,
HcTD);
physHcTD = TD->HcTD.NextTD;
TD->HcTD.NextTD = (ULONG) TDIigt;
TDIlist=TD;
} while (physHcTD);

11
/I Process list that is now reordered to completion order
11
while (TDlist '=NULL) {
TD =TDlist;
TDlist = (PHCD_TRANSFER DESCRIPTOR) (TD->HcTD.NextTD);
if (TD->Status==TD_CANCELED) {
FreeTransferDescriptor(TD);
continue;

78

OpenHCI - Open Host Contraller Interface Specification for USB

}
Request = TD->UshdRequest;
Endpoint = TD->Endpoint;
if (Endpoint->Type !=Isochronous) {
if (TD->HCTD.CBP) {
TD->TransferCount -=
(((TD->HcTD.BE ~ TD->HcTD.CBP) & OxFFFFF000) ? 000001000 : 0) +
(TD->HCTD.BE & 0x00000FFF) - (TD->HcTD.CBP & 0x00000FFF) + 1;
}
if (TD->HcTD.Control.DP!=Setup) {
Request->BufferLength += TD->TransferCount;
}
if (TD->HCTD.Control.CC == NoError) {
11
/I TD completed without error, removeit from USBD_REQUEST list,
/l'if USBD_REQUEST list is how empty, then complete the request.
11
Endpoint->HcdHeadP = TD->NextHcdTD;
RemoveL istEntry(& TD->RequestList);
FreeTransferDescriptor(TD);
if (IsListEmpty(& Request->HcdList)) {
if (Request->Status!=USBD_CANCELING)
Request->Status= USBD_NORMAL_COMPLETION,;
else
Request->Status= USBD_CANCELED,;
Compl eteUsbdRequest(Request);
}
} else{
11
/I TD completed with an error, remove it and other TDs for same request,
/I set appropriate statusin USBD_REQUEST and then completeit. There
/I aretwo special cases: 1) error is DataUnderun on Bulk or Interrupt and
/I ShortXferOk istrue; for this do not report error to USBD and restart
/I endpoint. 2) error is DataUnderrun on Control and ShortXferOk istrue;
/I for thisthe final status TD for the Request should not be canceled, the
/I Request should not be completed, and the endpoint should be restarted.
/I NOTE: The endpoint has been halted by the controller
11

for (tn = Endpoint->HcdHeadP,
tn != Endpoint->HcdTailP;
tn = tn->NextHcdTD){
if (Request !=tn->UsbdRequest ||

(TD->HcTD.Control.CC == DataUnderrun & &
Request->ShortXferOk & &
Request->Status '= USBD_CANCELING &&
TD->HcTD.Control .DP !=tn->HcTD.Control.DP))

break;

79

OpenHCI - Open Host Contraller Interface Specification for USB

}
Endpoint->HcdHeadP = tn;
Endpoint->HcdED->HCcED.HeadP = tn->Physical Address |
(Endpoint->HcED->HcED.HeadP &
(HcEDHeadP_HALT | HCEDHeadP_CARRY));
while ((tn = CONTAINING_RECORD(
Removel istHead(& Request->HcdList),
HCD_TRANSFER_DESCRIPTOR,
RequestList)) I=NULL){
if (tn!=TD && tn != Endpoint->HcdHeadP)
FreeTransferDescriptor(tn);
}
if (Endpoint->HcdHeadP->UshdRequest == Request) {
InsertTailList(& Request->HcdList,
& Endpoint->HcdHeadP->RequestList);
Endpoint->HcdED->HCcED.HeadP & = ~HCEDHeadP_HALT;
} else{
if (Request->ShortXferOk && (TD->HcTD.Control.CC == DataUnderrun)) {
if (Request->Status!=USBD_CANCELING)
Request->Status = USBD_NORMAL_COMPLETION,;
else
Request->Status= USBD_CANCELED,;
Endpoint->HcdED->HCcED.HeadP & = ~HCEDHeadP_HALT;
} elseif (Request->Status '= USBD_CANCELING) {
Request->Status= USBD_CC_Tablef TD->HcTD.Control.CCJ;
} else{
Request->Status= USBD_CANCELED,;

}
CompleteUshdRequest(Request);
}
FreeTransferDescriptor(TD);
}
}else{

1
/I Code for Isochronousis|eft as an exercise to the reader
1

80

OpenHCI - Open Host Contraller Interface Specification for USB

5.2.10 USB Bandwidth Allocation

The Hogt Controller Driver initidlizes avauein its device data which reflects the total bandwidth
available which can be committed on the USB for periodic events. This would be the maximum amount
of any USB frame which can be consumed by interrupt and isochronous packets. When apipe on an
endpoint is opened for usage, its bandwidth is alocated. The bandwidth used by an interrupt or
isochronous endpoint must therefore be set before the pipe is opened and any transfers are performed.
All trangfers performed on the pipe must not exceed the bandwidth which has been sst. Thisis part of
the USBDI interface and the Host Controller Driver does not need to verify this. The Host Controller
Driver tracks dl alocated bandwidth for every periodic scheduling list it can schedule into. When a
pipe needs to dlocate bandwidth, the Host Controller Driver first checks to make sure that such an
alocation would not exceed the maximum alowed alocations by checking the schedule ligts of the
deepest depth (i.e., the 32-ms schedules). If no 32-ms schedule will overflow, the Host Controller
Driver determines which of the scheduling lists (of those that are vdid for the alocation request) has the
least currently dlocated bandwidth. The bandwidth is committed and the Endpoint Descriptor is
assgned to that scheduling dot.

| sochronous bandwidth alocations are the same as interrupt bandwidth alocation of a frequency of
1ms.

See Section 5.2.7.2.1 on interrupt polling rate for related informetion.

5.2.10.1 Scheduling Overrun Errors

SchedulingOver run errors occur when the Host Controller is not able to complete dl the interrupt and
isochronous transfers prior to the end of the frame. Since the Host Controller Driver does not dlow the
USB frames to be overcommitted, the cause of SchedulingOverrun errorsis the inability of the Host
Controller to gain timely access to the host bus. Thisis normaly atrangent condition that can be
ignored because the transfers most likely to be missed are the isochronous transfers at the end of the
periodic ligt; Snce isochronous is not a guaranteed ddivery stream, the listener must be able to ded with
missing data. However, it is possible that due to a particular system configuration, the condition may
persist for long periods of time. If SchedulingOverrun errors occur in 100 consecutive frames, it is
recommended that the Host Controller Driver reduce the committed bandwidth on the bus and make a
note of the new available bandwidth, preferably in a place where the information can persst between
OS boots.

81

OpenHCI - Open Host Contraller Interface Specification for USB

Normally the Host Controller can recover from SchedulingOverrun errors (see Section 4.3.2.3.5.3,
Time Errors). However, if SchedulingOverrun errors persist for 32759 consecutive frames, then stde
Isochronous Transfer Descriptorsin the periodic list can look like Isochronous Transfer Descriptors that
are scheduled for later ddivery (this may not gppear serious, but transmitting an isochronous packet in
any but its assigned frame can cause serious problems, not to mention that any packet status words that
may have been written may be mistaken by the Host Controller as buffer offsets, causing even more
problems). Therefore, it is necessary that the Host Controller Driver clear the | sochronousEnable bit
inthe HcControl register when it detects that

this Stuation is about to occur. This said, it must be noted thet it is nearly impossible for this Situation to
occur because the Host Controller Driver should have attempted to reduce the committed bandwidth
327 times, to no avall.

Sinceit is possble that the same host bus Stuation that prevents the Host Controller from completing its
schedule can cause the host processor to stall and thus miss a SchedulingOverrun interrupt, the Host
Controller provides the Error FrameCount in the HcCommandStatus register to assst the Host
Controller Driver in kegping track of the number of consecutive SchedulingOverrun errors.

5.2.11 ControlBulkServiceRatio

The USB Specification requires that control transfers be given preference over bulk trandfers. The
OpenHCI Hogt Controller achieves this with the ControlBulk ServiceRatio fidd in the HcControl
regiser. Host Controller Driver merdly setsthisfield to the number of control endpoints that should be
serviced for each bulk endpoint that is serviced. For the purposes of the ControlBulk ServiceRatio
Endpoint Descriptors that have either the sKip or Halt bits set or have HeadP equd to TailP are not
counted.

82

OpenHCI - Open Host Contraller Interface Specification for USB

5.3 Host Controller Interrupt

When the Host Controller needs attention it requests a processor interrupt. The following sample code
for HCD'sinterrupt service routine primarily shows the normal case for the USBOPERATIONAL State.

BOOLEAN
HcdlInterruptService(
IN HCD_DEVICE _DATA DeviceData

)

/I define some variables
ULONG Contextlnfo, Temp, Temp2, Frame;

1
/I lsthis our interrupt?
1
if (DeviceData->HCCA ->HccaDoneHead != 0) {
Contextlnfo = WritebackDoneHead; /I note interrupt processing required
if (DeviceData->HCCA->DoneHead & 1) {
ContextInfo |= DeviceData->HC->Hcl nterruptStatus &
DeviceData->HC->HclnterruptEnable;
}
} else{
ContextInfo = DeviceData->HC->Hcl nterruptStatus &
DeviceData->HC->HclnterruptEnable;
if (Contextlnfo == Q)
return FALSE; /I not my interrupt
}

1

/It isour interrupt, prevent HC from doing it to us again until we are finished
1

DeviceData->HC->HclnterruptDisable = MasterInterruptEnabl e;

if (ContextInfo & UnrecoverableError) {
1
/I The controller is hung, maybe resetting it can get it going again. But that codeisleft as an exerciseto
/I the reader.
1

83

OpenHCI - Open Host Contraller Interface Specification for USB

if (ContextInfo & (SchedulingOverrun | WritebackDoneHead | StartOf Frame | FrameNumberOverflow))
Contextlnfo |= MasterInterruptEnable; // flag for end of frame type interrupts
I
/I Check for Schedule Overrun
I
if (Contextinfo & SchedulingOverrun) {
Frame = Get32BitFrameNumber(DeviceData);
Temp2 = DeviceData->HC->HcCommandStatus & EFC_Mask;
Temp = Temp2 - (DeviceData->SOCount & EFC_Mask);
Temp = (((Temp >> EFC_Position) - 1) % EFC_Size) + 1; // number of bad frames since last error
if (I(DeviceData->SOCount & SOC_Mask) || // start anew count?
((DeviceData->SOCount & SOC_Mask) + DeviceData->SOStallFrame + Temp) != Frame) {
DeviceData->SOLimitFrame = DeviceData->SOStd | Frame = Frame - Temp;
DeviceData->SOCount = Temp | Temp2;
} else{ /I got arunning count
DeviceData->SOCount = (DeviceData->SOCount + Temp) & SOC_Mask | Temp2;
while (Frame - DeviceData->SOLimitFrame >= 100) {
DeviceData->SOLimitHit++;
DeviceData->SOLimitFrame += 100;
}
if (Frame - DeviceData->SOStallFrame >= 32740) {
DeviceData->HC->HcControl & = ~IsochronousEnable; // stop isochronous transfers
DeviceData->SOStd|Hit = TRUE;
DeviceData->SOCount = Temp2; // clear error counter
}
}
DeviceData->HC->HclnterruptStatus = SchedulingOverrun; // acknowledge interrupt
Contextlnfo &= ~SchedulingOverrun;
} else{ /I no schedule overrun, check for good frame.
if (Contextinfo & MasterInterruptEnable)
DeviceData->SOCount &= EFC_MASK; // clear counter

}

I
/I Check for Frame Number Overflow
/I Note: the formulabelow prevents adebugger break from making the 32-bit frame number run backward.
1
if (ContextInfo & FrameNumberOverflow) {
DeviceData->FrameHighPart += 0x10000 -
((DeviceData->HCCA ->HccaFrameNumber ~ DeviceData->FrameHighPart) & 0x8000);
DeviceData->HC->HclnterruptStatus = FrameNumberOverflow; // acknowledge interrupt
Contextlnfo & = ~FrameNumberOverflow;

}

1

/I Processor interrupts could be enabled here and the interrupt dismissed at the interrupt
/I controller, but for simplicity this code won't.

1

OpenHCI - Open Host Contraller Interface Specification for USB

if (Contextinfo & ResumeDetected) {
I
/I Resume has been requested by a device on USB. HCD must wait 20ms then put controller in the
/I UsbOperational state. Thiscodeisleft asan exerciseto the reader.
I
ContextInfo & = ~ResumeDetected;
DeviceData->HC->Hcl nterruptStatus = ResumeDetected;

}

I

/1 Process the Done Queue

I

if (Contextinfo & WritebackDoneHead) {
ProcessDoneQueue(DeviceData ->HccaDoneHead);
I
/I Done Queue processing complete, notify controller
I
DeviceData->HCCA ->HccaDoneHead = 0;
DeviceData->HC->Hcl nterruptStatus = WritebackDoneHead;
Contextlnfo & = ~WritebackDoneHead;

}

I
/I Process Root Hub changes
I
if (ContextInfo & RootHubStatusChange) {
I
/I EmulateRootHubl nterruptXfer will completeaHCD_TRANSFER_DESCRIPTOR which
/I we then passto ProcessDoneQueue to emulate an HC completion
I
ProcessDoneQueue(Emul ateRootHubl nterruptX fer(DeviceData)->Physi cal Address);
1
/I leave RootHubStatusChange set in ContextInfo so that it will be masked off (it won’'t be unmasked
/I again until another TD is queued for the emulated endpoint)
1

}

if (Contextinfo & OwnershipChange) {
1
/I Only SMM drivers need implement this. See Sections5.1.1.3.3 and 5.1.1.3.6 for descriptions of what
/I the code here must do.
1

}

1

/I Any interrupts |eft should just be masked out. (Thisisnormal processing for StartOf Frame and

/I RootHubStatusChange)

1

if (ContextInfo & ~MasterInterruptEnable) /I any unprocessed interrupts?
DeviceData->HC->HclnterruptDisable = ContextInfo; // yes, mask them

85

OpenHCI - Open Host Contraller Interface Specification for USB

I
/I We' ve completed the actual service of the HC interrupts, now we must deal with the effects
I

I
/I Check for Scheduling Overrun limit
I
if (DeviceData->SOLimitHit) {
do{
PHCD_ENDPOINT_DESCRIPTOR ED;
if (IsListEmpty(EDListfED_|SOCHRONOUS].Head))
break; /I lsochronous List is empty
ED = CONTAINING_RECORD(
EDList[ED_ISOCHRONOUS].Head.Blink,
HCD_ENDPOINT_DESCRIPTOR,

Link);
if (ED->Endpoint->Type != | sochronous)
break; /I Only 1ms Interrupts left on list

DeviceData->AvailableBandwidth = DeviceData->M axBandwidthinUse - 64;
I
/' 1t isrecommended that the above bandwidth be saved in non-volatile memory for future use.
I
RemoveED(ED->Endpoint);

} while (--DeviceData->SOLimitHit);

DeviceData->SOLimitHit = 0;

}

I

/l'look for things on the PausedEDRestart list

I

Frame = Get32BitFrameNumber(DeviceData);

while (!sListEmpty(& DeviceData->PausedEDRestart) {
PHCD_ENDPOINT_DESCRIPTOR ED;

ED = CONTAINING_RECORD(DeviceData->PausedEDRestart.FLink,
HCD_ENDPOINT_DESCRIPTOR,
PausedLink);

if (LONG)(ED->ReclaimationFrame - Frame) > 0)

break;

RemovelistEntry(& ED->PausedLink);

ED->PausedFlag = FALSE;

ProcessPausedED(ED);

86

OpenHCI - Open Host Contraller Interface Specification for USB

I

/I'look for things on the StalledEDReclamation list

I

if (Contextinfo & MasterInterruptEnable & & !lsListEmpty(& DeviceData->StalledEDReclamation) {
Temp = DeviceData->HC->HcControl CurrentED;
Temp2 = DeviceData->HC->HcBulkCurrentED;
while (!IsListEmpty(& DeviceData->StalledEDReclamation) {

PHCD_ENDPOINT_DESCRIPTOR ED;

ED = CONTAINING_RECORD(DeviceData->StalledEDReclamation.FLink,
HCD_ENDPOINT_DESCRIPTOR,
Link);
RemovelistEntry(& ED->Link);
if (ED->PhysicalAddress == Temp)
DeviceData->HC->HcControl CurrentED = Temp = ED ->HcED.NextED;
eseif (ED->Physical Address == Temp2)
DeviceData->HC->HcBulkCurrentED = Temp2 = ED->HCcED.NextED;
if (ED->Endpoint != NULL) {
ProcessPausedED(ED); /I cancel any outstanding TDs
} else{
FreeEndpointDescriptor(ED);
}
}
DeviceData->HC->HcControl |= ControlListEnable | BulkListEnable; // restart queues
}

I

/I'look for things on the RunningEDReclamation list

I

Frame = Get32BitFrameNumber(DeviceData);

while (! sListEmpty(& DeviceData->RunningEDReclamation) {
PHCD_ENDPOINT_DESCRIPTOR ED;

ED = CONTAINING_RECORD(DeviceData->RunningEDReclamation.FLink,
HCD_ENDPOINT_DESCRIPTOR,

Link);
if (LONG)(ED->ReclaimationFrame - Frame) > Q)
break;
RemovelistEntry(& ED->Link);
if (ED->Endpoint != NULL)
ProcessPausedED(ED)); /I cancel any outstanding TDs

else
FreeEndpointDescriptor(ED);

}

11

/I'f processor interrupts were enabled earlier then they must be disabled here before we re-enable
/I the interrupts at the controller.

11

DeviceData->HC->HclnterruptEnable = MasterInterruptEnable;

return TRUE;

87

OpenHCI - Open Host Contraller Interface Specification for USB

5.4 Framelnterval Counter

The HcFminterval register is used to control the length of USB frames. The proper vaue for this
register, the one that generates SOF tokens at arate within the limits specified by the USB
Specification, is sat by system firmwareiif it is different from the HcFminterval register’ s reset value,
therefore, the Host Controller Driver should save this value when entered in order to be able to restore
the proper vaue after resets.

The Framel nterval fidd in the HcFminterval register may be adjusted by plus or minus one count no
more frequently than every sx USB frames. Thismeansit is necessary to know in which frame anew
Framel nterval takes effect. This can be accomplished by using the T bit in the HCFminterval and
HcFmRemaining registers. When writing the HcFminterval register, the Host Controller Driver
amply writesthe T bit asthe inverse of the T bit in the HcFmRemaining register; when the next SOF
occurs, both the T bit and the Framel nterval field will be copied to the HcFmRemaining register.

When setting the HcFminterval register, not only the Framel nterval field must be updated but aso
the FSL ar gestDataPacket fiedd must be set. Thisfield initidizes a counter within the Host Controller
that is used to determineif atransaction on USB can be completed before EOF processng must start.
It isafunction of the new Framel nterval and is caculated by subtracting from Framel nterval the
maximum number of bit times for transaction overhead on USB and the number of bit times needed for
EOF processing, then multiplying the result by 6/7 to

account for the worst case bit stuffing overhead. The value of MAXIMUM_OVERHEAD below is
210 hit times.

The sample code below has purposaly not defined the value of HcFminterval as a structure so that the
entire register can be updated in a single write operation. Thisis necessary to ensure that dl the fidds
within HcFminterval are updated together for consistency.

ULONG
SetFramelnterval (
IN PHCD_DEVICE DATA DeviceData,
IN BOOLEAN UpNotDown
)
{
ULONG FrameNumber, Interval;

88

OpenHCI - Open Host Contraller Interface Specification for USB

Interval |= (DeviceData->HC->HcFminterva & OxO0003FFF);
if (UpNotDown)
++Interval;
else
--Interval;
Interval |= (((Interval - MAXIMUM_OVERHEAD) * 6) / 7) << 16;
Interva |= 0x80000000 & (0x80000000 * (DeviceData>HC->HcFmRemaining));
FrameNumber = Get32BitFrameNumber(DeviceData);
DeviceData->HC->HcFminterval = Interval;
if (0x80000000 & (DeviceData->HC->HcFmRemaining ~ Interval)) {
FrameNumber += 1);
} else{
FrameNumber = Get32BitFrameNumber(DeviceData);

}
return (FrameNumber); /I return frame number new interval takes effect
}
ULONG
Get32BitFrameNumber(
HCD_DEVICE_DATA DeviceData
)
{
ULONG fm, hp;
I
/I This code accounts for the fact that HccaFrameNumber is updated by the HC before the HCD gets an
[l interrupt that will adjust FrameHighPart.
I
hp = DeviceData->FrameHighPart;
fm = DeviceData->HCCA ->HccaFrameNumber;
return ((fm & Ox7FFF) | hp) + ((fm ~ hp) & 0x8000);
}
5.5 Root Hub

The Hogt Controller Driver is responsible for making al endpoints to the root hub appear as a normd
hub endpoint to USBD. Thisinvolves virtualizing the endpoint communications and ,as necessary,
maintaining the HCRtHubStatus register. After atrangtion out of the USBReset state, the Host
Controller Driver must make the root hub appear at the default address. See the USB Specification for
the details of the expected behavior of the root hub.

89

OpenHCI - Open Host Contraller Interface Specification for USB

6. HOST CONTROLLER

6.1 Introduction

This chapter discusses the Host Controller. The Host Controller is the device which is located between
the USB bus and the Host Controller Driver in the OpenHCI architecture. The Host Controller is
charged with processing dl of the Data Type ligs built by the Host Controller Driver. Additiondly, the
USB Root Hub is atached to the Host Controller.

This chapter is organized into the following sections:

? USB States This section discusses the Host Controller Operation with respect to
the possible USB Bus dtates.

? Frame Management This section discusses dl aspects of managing the 1-ms USB Frame.

? Ligt Processng List Processing is the main function of the Host Controller. This
section describes the detailed processing of the HCD-built Data Type
ligs.

? Interrupt Processing This section describes the interrupt events tracked by the Host
Controller and how the Host Controller providesinterrupts for those
events.

? Root Hub This section describes the Root Hub support.

6.2 USB States

The Hogt Controller has four USB gates visible to the Host Controller Driver viathe Operationd
Regisers USBOPERATIONAL, USBRESET, USBSUSPEND, and USBRESUME. These states define the
Host Cortroller reponghilities relating to USB signding and bus Sates.

The USB dates are reflected in the HostControllerFunctiona State field of the HcControl register. The
Host Controller Driver is permitted to perform only the USB date trangtions shown inFigure 6-1. The
Host Controller may only perform a single sate trandition. During aremote wakeup event, the Host
Controller may trandtion from UsSBSUSPEND to USBRESUME.

90

OpenHCI - Open Host Contraller Interface Specification for USB

UsB OPERATIONAL UsBRESET write

UsBOPERATIONAL Write
UsBOPERATIONAL Write

UsBRESET write
UsB SUSPEND write

UsBRESUME write
or
Remote Wakeup

UsBRESET write Hardware Reset

UsB SUSPEND

Software Reset

Figure6-1: USB States

6.2.1 UsbOperational

When in the USBOPERATIONAL State, the Host Controller may process lists and will generate SOF
Tokens. The USBOPERATIONAL state may be entered from the USBRESUME or USBRESET dates. It
may be exited to the USBRESET or USBSUSPEND states.

When trangitioning from USBRESET or USBRESUME to USBOPERATIONAL, the Hogt Controller is
responsible for terminating the USB reset or resume signding as defined in the USB Specification prior
to sending a token.

A trangtion to the USBOPERATIONAL Sate affects the frame management registers of the Host
Controller. Smultaneoudy with the Host Controller’ s sate trangtion to USBOPERATIONAL, the
FrameRemaining fiedd of HcFmRemaining is loaded with the vaue of the Framel nterval fiddin
HcFminterval. Thereisno SOF Token sent at thisinitid load of the FrameRemaining fied. The
first SOF Token sent after entering the USBOPERATIONAL Sate is sent following next frame boundary
when FrameRemaining transtions from O to Framel nterval. The FrameNumber fidd of
HcFmNumber isincremented on a sate trangition to USBOPERATIONAL.

91

OpenHCI - Open Host Contraller Interface Specification for USB

6.2.2 UsbReset

When in the USBRESET date, the Host Controller forces reset agnding on the bus. The Host
Controller’slist processing and SOF Token generation are disabled whilein USBRESET. In addition,
the FrameNumber fidd of HcFmNumber does not increment while the Host Controller isin the
USBRESET dtate. The USBRESET date can be entered from any state at any time. The Host Controller
defaults to the USBRESET dtate following a hardware reset. The Host Controller Driver isresponsible
for satisfying USB Resat sgnding timing defined by the USB Specification.

6.2.3 UsbSuspend

The USBSUSPEND dtate defines the USB Suspend state. The Host Controller’ s list processing and SOF
Token generation are disabled. However, the Host Controller’ s remote wakeup logic must monitor
USB wakeup activity. The FrameNumber fidd of HcFmNumber does not increment while the Host
Controller isin the USBSUSPEND state.

USBSUSPEND s entered following a software reset or from the USBOPERATIONAL state on command
from the Host Controller Driver. Whilein USBSUSPEND, the Host Controller may force atrangtion to
the USBRESUME state due to a remote wakeup condition. This trangition may conflict with the Host
Controller Driver initigting atrangtion to the USBRESET state. If this Situation occurs, the HCD-initiated
trangtion to USBRESET has priority. The Host Controller Driver must wait 5 ms after trangtioning to
USBSUSPEND before trangtioning to the USBRESUME state. Likewise, the Root Hub must wait 5 ms
after the Host Controller enters USBSUSPEND before generating alocal wakeup event and forcing a
trangtion to USBRESUME. Following a software reset, the Host Controller Driver may cause a
trangtion to USBOPERATIONAL if the trangtion occurs no more than 1 ms from the trandtion into
USBSUSPEND. If the 1-ms period isviolated, it is possible that devices on the bus will go into Suspend.

6.2.4 UsbResume

When in the USBRESUME state, the Host Controller forces resume signding on the bus. Whilein
USBRESUME, the Root Hub is responsible for propagating the USB Resume signal to downstream ports
as specified in the USB Specification. The Host Controller's list processing and SOF Token generation
are dissbled whilein UsBRESUME. In addition, the FrameNumber fidd of HcFmNumber does not
increment while the Host Controller isin the USBRESUME state.

UsBRESUME isonly entered from USBSUSPEND. The trandition to USBRESUME can beinitiated by the
Host Controller Driver or by a USB remote wakeup signaled by the Root Hub. The Hogt Controller is
responsible for resolving state transition conflicts between the hardware wakeup and Host Controller
Driver initiated date trangtions. Legd state transtionsfrom USBRESUME are to USBRESET and to
USBOPERATIONAL.

The Host Controller Driver is responsible for USB Resume signd timing as defined by the USB
Specification.

92

OpenHCI - Open Host Contraller Interface Specification for USB

6.3 Frame Management

The Host Controller is responsible for managing al aspects of “framing” for the USB. These
respongibilities include the sending of SOF Tokens on the bus and communicating with the Host
Controller Driver on frame-spedific information.

6.3.1 Frame Timing

The Host Controller uses three registers to perform the frame timing and informeation reporting tasks of
frame management. The 16-bit FrameNumber fidd of the HCFmNumber register is kept by the Host
Controller as a reference number for the current frame. This frame number is sent over the USB asthe
Frame Number field in SOF Tokens and is reported by the Host Controller to the HCCA for use by
the Hogt Controller Driver. The Framel nterval fidd of the HcFminterval register and the
FrameRemaining fidd of the HCFmRemaining register are used to define frame boundaries.

The Framelnterval fidd stores the length of aUSB frame in 12-MHz bit times. Specificdly, the
Framel nterval field corresponds to (Frame Length - 1) bit times. Framel nterval isloaded with a
default value of Ox2EDF (11,999 decimdl) at reset. This value produces a USB frame congsting of
exactly 12,000 bit times. The Host Controller Driver may vary the value of Framel nterval a any time.

The FrameRemaining fied functions as a 14-hit frame counter. When operating, the register vaue
decrements once per USB hit time. When FrameRemaining reachesavaue of 0, it isloaded with the
vaue of the Framel nterval field a the next bit-time boundary. The frame boundary is the bit boundary
on which the value of FrameRemaining trangtionsfrom O to Framelnterval (aJto K trangtionis
seen on the USB at this boundary signifying the firgt bit of the sync field of an SOF Token - see Section
6.3.2). In other words, the last bit time for aframe is defined as the bit time in which the vaue of
FrameRemaining isO. Thefirg bit time for aframeis defined as the bit time in which the value of
FrameRemaining isequd to Framel nterval.

The HCFmNumber register holds the current frame number in the FrameNumber fidd. Thisfiddis
incremented by the Host Controller at each frame boundary. FrameNumber isincremented when the
FrameRemaining fidd trangtions from O to Framel nterval. The FrameNumber field may be used
by the Host Contraller Driver in the congtruction of alarger resolution frame number. To aid the Host
Controller Driver in thistask, the Host Controller writes the FrameNumber fidd to
HccaFrameNumber immediately following the change in vaue of FrameNumber at the beginning of
the frame. Immediately following the completion of the write of FrameNumber to
HccaFrameNumber, the Host Controller sets the StartOfFrame bit in the HelnterruptStatus register
to sgnify a StartOf Frame interrupt event.

93

OpenHCI - Open Host Contraller Interface Specification for USB

6.3.2 StartOfFrame (SOF) Token Generation

When in the USBOPERATIONAL state the Host Controller generates an SOF Token at the beginning of

each frame period. There are no SOF Tokens generated when the Host Controller isin a state other
than USBOPERATIONAL.

The Host Controller must be exact in its ddivery of the SOF token to the USB. All OpenHCI Host
Controllers send the firgt bit of the SOF Token SYNC field during the first bit time of theframe. The
timing of the SOF Token on the busis shown in Figure 6-2.

N i W

HcFmRemain 0x0001 X 0x0000 Ox2EDF X O0x2EDE X

J K J
USB Bus State (IDLE) (Sync[o]) X (Sync[1]) X

FRAME Boundary = -

Figure6-2: Timing for SOF Token Generation on USB

6.3.3 HccaFrameNumber Update

When in the USBOPERATIONAL gtate, the Host Controller writes the value of the FrameNumber fidd
in HcFmNumber to HccaFrameNumber following the increment of FrameNumber a each frame
boundary. Thisalowsthe Host Controller Driver to use the 16-bit value kept in hardware to generate a
software 32-bit frame number without requiring the Host Controller Driver to access the Host
Controller’s Operationd Regigers. The Host Controller Driver is notified of HccaFrameNumber
updates viaan interrupt if the StartOf Frame interrupt event is enabled.

o4

OpenHCI - Open Host Contraller Interface Specification for USB

6.4 List Processing
6.4.1 Priority

USB does not provide a mechanism for attached devices to arbitrate for use of thebus. Asa
consequence, arbitration for use of the interfaceis ‘ predictive’ with the Host Controller and host
software assgned the respongibility of providing service to devices when it is predicted that a device will
need it. USB by necessity supports a number of different communications models between software
and Endpoints (Bulk, Control, Interrupt, and 1sochronous). Usage of the bus varies widely among these
types of services making the task of the hogt fairly chalenging. The

approach used by OpenHCI isto have two levels of arbitration to slect among the endpoints. Thefirst
leve of arbitration isa thelist level. Each endpoint type needing serviceisinalis of a

corresponding type (e.g., Bulk Endpoints are in the Bulk list) and the Host Controller sdlects which list
to service. Within aligt, endpoints are given equa priority insuring that al endpoints of a certain type
have more-or-less equal service opportunities.

Theligt priorities are modified as endpoints are serviced and at periodic intervals. In each frame, an
interva of timeis reserved for processing of itemsin the Control and Bulk ligs. Thisintervd isat the
beginning of each frame. The Hogt Contraller Driver limitsthistime by writing HcPeriodicSart with a
bit time after which periodic transfers (Interrupt and Isochronous) have priority for use of the bus.
During periodic list processing, the Interrupt list specific to the current frame is serviced before the
Isochronous list. When processing of the periodic lists ends, processing of the Control and Bulk lists
resumes. Figure 6-3 shows the priority among periodic lists and nonperiodic lists within asingle frame.

FRAME Boundary FRAME Boundary
Periodic List Processing Started Periodic List Processing Complete

! ! ! !

SECTION 1 SECTION 2 SECTION 3

w Non-periodic lists Interrupt List Isochronous List Non-periodic lists

Remaining > Start <€ {-—> Remaining < Start

NOTE: Remaining and Start are fields in the HcFmRemaining

Remaining = Start and HcPeriodicStart Operational registers.

Figure 6-3: List Priority within a USB Frame

95

OpenHCI - Open Host Contraller Interface Specification for USB

6.4.1.1 List Priority

As dated previoudy, the lists built up by the Host Controller Driver are classfied as either periodic or
nonperiodic. The Interrupt list and the Ischronous list are periodic because the endpoints on those lists
require service a specific timesin a deterministic manner. The Control

list and the Bulk list are nonperiodic because endpoints on those lists can tolerate latency and expect
service only on atime-available basis.

The Host Controller breaks the USB frame up into three distinct sections with regard to list service as
shownin Figure 6-3. Section 1 is devoted to the nonperiodic lists. Thisisfollowed by Section 2, which
isasection reserved for the periodic listsin which both the Interrupt list and the Isochronouslist are
serviced to completion. Section 3 of the frame is again devoted to the nonperiodic lists.

6.4.1.1.1 Periodic Lists

Thelig priority between the periodic ligtsis fixed with the Interrupt list having priority over the
Isochronous list. When servicing the periodic lists, the Host Controller is actudly servicing a
anglelig, caled the Periodic list, which contains both Interrupt Endpoint Descriptors and |sochronous
Endpoint Descriptors. The Host Controller Driver ensuresthat dl Interrupt Endpoint Descriptors are
placed on theligt in front of any Isochronous Endpoint Descriptors.

6.4.1.1.2 Nonperiodic Lists

The priority agorithm between the nonperiodic lists is more complicated than that of the periodic ligts.
Control endpoints are given equa or more access to the bus in comparison with Bulk Endpoints. More
specifically, N Control Endpoints are given access to the busfor every 1 Bulk Endpoint. Thisratio of
N:1 istermed the Control Bulk Service Ratio. The Host Controller Driver has control over the Control
Bulk Service Ratio viathe ControlBulk ServiceRatio fiedd of the HcControl Register. The range of
possible Control Bulk Service Retiosisfrom 1:1to 4:1. An example of a4:1 Control/Bulk Service
Ratio isshown in Figure 6-4.

BULK)

ED l

96

OpenHCI - Open Host Contraller Interface Specification for USB

Figure 6-4. Control Bulk Service Ratio of 4:1

97

OpenHCI - Open Host Contraller Interface Specification for USB

The Host Controller enforces the Control Bulk Service Ratio regardless of the number of Control and
Bulk Endpoint Descriptors present on their respective lists. If thereis only 1 Control Endpoint
Descriptor on the Control list and the Control Bulk Retio is4:1, that Control Endpoint Descriptor is
serviced 4 times before aBulk ED is serviced. If there are no Endpoint Descriptors on the Control list
or the Bulk list when the Host Controller attempts to service that ligt, the Host Controller will “skip” that
lig and immediately begin servicing the other nonperiodic list and complete the required number of EDs.
The Hogt Controller will continue to check the empty list when ever the Control Bulk Service Ratio
dictates, servicing any new Endpoint Descriptors according to the Control Bulk Service Ratio.

The Control Bulk Service Ratio must be maintained across frame boundaries when the Host Controller
isinthe USBOPERATIONAL state. That is, if the Host Controller has serviced 2 of 4 Control Endpoint
Descriptors for a4:1 ratio and the frame ends, the Host Controller must service the remaining 2 Control
Endpoint Descriptors before servicing a Bulk Endpoint Descriptor during the next opportunity for
Nonperiodic service in a subsequent frame.

When beginning service of the nonperiodic ligs after trangtioning into the USBOPERATIONAL state, the
Host Controller will service the required number of Control Endpoint Descriptors prior to a Bulk
Endpoint Descriptor.

For an Endpoint Descriptor to count toward the Service Ratio, a transaction must be initiated on the
USB for that endpoint. (The transaction need not be successful.) If no transaction isinitiated, the
number of Endpoint Descriptors remaining before a switch to the other list is made is not diminished.
For example, if there are 3 Control Endpoint Descriptors | eft before a switch to the Bulk list and the
current Control Endpoint Descriptor is skipped (no token sent), there are till 3 Control Endpoint
Descriptors |eft before a switch to the Bulk list is made.

6.4.1.2 Endpoint Descriptor Priority

Within aligt, Endpoint Descriptors are serviced with around robin priority scheme. The Host
Controller mugt initidly begin service at the head of the list and service each Endpoint Descriptor on the
list sequentialy. When the Host Controller reaches the end of the lit, it reads the list’s Head Pointer
and garts again with the first Endpoint Descriptor on the list. Servicing an Endpoint Descriptor is
defined as making a Sngle transaction attempt from the first Transfer Descriptor in the queue. Once a
transaction atempt is made, whether successful or not, and the appropriate actions are taken to
complete that transaction, the Host Controller will service the next Endpoint Descriptor rather than
make a second transaction attempt on the current Endpoint Descriptor.

98

OpenHCI - Open Host Contraller Interface Specification for USB

6.4.1.3 Transfer Descriptor Priority

The priority of Transfer Descriptors on a queue is firgt-come-fird-serve. The Transfer Descriptors the
Host Controller services are dways part of a queue attached to an Endpoint Descriptor. The Host
Controller services the first Transfer Descriptor on the queue which is pointed to by the

NextTransfer Descriptor fied of the Endpoint Descriptor. When that Transfer Descriptor is retired, it
is removed from the queue and the Transfer Descriptor linked with the NextTransfer Descriptor fidd
of that Transfer Descriptor is moved to the front of the queue. The retirement process for Transfer
Descriptorsis described in Section 6.4.4.6 and 4.3.1.6. As mentioned previoudy, when the Host
Controller services an Endpoint Descriptor, only a single transaction attempt is made. The Host
Controller moves on to the next Endpoint Descriptor after the first transaction attempt rather than
finishing the entire Transfer Descriptor of the current Endpoint Descriptor.

6.4.2 List Service Flow

This section describes the actions required of the Host Controller during list processing. These actions
are taken after the Host Controller has determined which particular list isto be serviced. The generd
ligt service flow is depicted in Figure 6-5.

6.4.2.1 List Enabled Check

Thefirg action the Host Controller takes when processing alist isto check that the list is enabled.
Periodicdly, lists are disabled by the Host Controller Driver for the purpose of atering an Endpoint
Descriptor (or other reasons). If thelist is enabled, the Host Controller may servicethelidt. If theligtis
disabled, the Host Controller skipsthat list and moves on to the next list. Lists are enabled/disabled
with the ligt endble bits of the HcControl register. When alist is disabled during aframe, the Host
Controller must not process the list beyond the next frame boundary. However, when alist is enabled,
it isimmediately avallable for processng during the current frame and the Host Controller need not wait
for the next frame. In addition, when alist is enabled after being previoudy disabled, the only piece of
information the Hogt Controller may assumeisvdidisthelist’s“HeadED” pointer and, if anonperiodic
lig, theligt’s“CurrentED” pointer.

The I sochronousListEnable bit is used to disable processing of the Isochronous list which is dways a
thetall of the periodic ligt. If the Host Controller finds an Isochronous Endpoint Descriptor while
sarvicing the Periodic list and the I sochronousL istEnable bit is*0’, the Host Controller stops
processing the ligt.

99

OpenHCI - Open Host Contraller Interface Specification for USB

YES

Read

HEAD pointer —YES

HEAD pointer
=0?

SERVICE
LIST

List

YES

ISO List
Enabled?

NO

FINISHED YES

YES

Control/Bulk
Ratio Satisfied?

YES

YES

NO
NO‘YES

*

NO

CONTROL LlIst?

‘

Peridoc List? vES Enabled? NG FINISHED
NO
He CurrentED L
=0? <
YES
! > o Contr ves—»| Ho___Currente =
v =
(Bulk or Control) e e
A 4
Set
Filled =0
NO
FINISHED YES He__ :Cg;rentED
Y o
» Service Endpoint o |
NO Descriptor - T
YES

ISO List
Enabled?

YES

FINISHED

Figure 6-5: List Service Flow

100

OpenHCI - Open Host Contraller Interface Specification for USB

6.4.2.2 Locating Endpoint Descriptors

After determining aligt is enabled, the Host Controller locates the first Endpoint Descriptor requiring
sarvice. Thefirg timethe Host Controller services aligt after entering the USBOPERATIONAL dete, it
usesthe list’s Head Pointer to locate the first Endpoint Descriptor on the list. If the Head Pointer is* 0,
there are no Endpoint Descriptors on the list and the Host Controller proceeds to the next list.

The Host Controller dways uses the Head Pointer to find the first Endpoint Descriptor when servicing
the Interrupt (periodic) list. All of the Interrupt Head Pointers are located in the Hecal nterruptTable
(described in Section 4.4.2.1). The Hogt Controller makes a determination of which Head Pointer to
use by using the low order 5 bits of the FrameNumber fidd of HcFmNumber as a Dword index into
thetable. Anindex value of ‘00000’ binary corresponds to the Head Pointer (Dword) at offset * 0x00.’
Anindex value of ‘11111 binary corresponds to the Head Pointer (Dword) at offset ‘Ox7C.

In the case of the nonperiodic ligs, the operation is dightly different. Since the nonperiodic lists are
serviced on atime-available basis, the Host Controller may not be able to service an entire list within a
gngleframe. In order to satisfy the requirement of servicing Endpoint Descriptors in around-robin
priority, the Host Controller maintains “ CurrentED” pointers for each list (the HcBulkCurrentED
register and the HcControl CurrentED regigter). These pointers dways point to the next Endpoint
Descriptor requiring service on their respective list. When servicing the nonperiodic lists, the Host
Controller checks the HcBulkCurrentED or HcControl CurrentED register to seeif thereis anonzero
vaue. If thevaue of the “CurrentED” register contains a nonzero pointer to an Endpoint Descriptor,
the Host Controller attempts to process that Endpoint Descriptor. If the “ CurrentED” register contains
avdueof ‘0, the Host Controller has reached the end of thelist. At this point, the Host Controller
checksthe BulkL istFilled bit or ControlListFilled bit of the HcCommandStatus regigter. If the
respective “Filled” bitissetto ‘1, thereisat least one Endpoint Descriptor on the list which needs
sarvice. Inthis case, the Host Controller will copy the value of HcControlHeadED or
HcBulkHeadED into HcControl CurrentED or HcBulkCurrentED respectively, clear the “Filled” bit
to ‘0,” and attempt to process the Endpoint Descriptor now present in the “ CurrentED” regidter. If the
“Filled” bitisa‘0 when checked, there are no Endpoint Descriptors on the list needing service and the
Host Controller moves on to the next list.

101

OpenHCI - Open Host Contraller Interface Specification for USB

After servicing an Endpoint Descriptor, the Host Controller proceeds differently, depending on the list
type. If the current list is the periodic list, the Host Controller checks the NextEndpointDescriptor
pointer of the just completed Endpoint Descriptor. 1f nonzero, the Host Controller continues processing
with the next Endpoint Descriptor. If zero, the Host Controller moves on to the nonperiodic ligts. If the
current list isthe Bulk ligt, after servicing a single Endpoint Descriptor the Host Controller moves on to
the next ligt. If the current ligt isthe Control Ligt, the Host Controller next action is dependent on
whether or not the number of Control Endpoint Descriptors dictated by the Control/Bulk Service Retio
have been serviced. If the Control/Bulk Service Ratio has been satisfied, the Host Controller moves on
to the next ligt; otherwise, service of another Control Endpoint Descriptor is attempted.

6.4.3 Endpoint Descriptor Processing

During the processing of alist, the Host Controller is required to interpret and service the Endpoint
Descriptors present on thet list. The flow for service of an Endpoint Descriptor is shown in Figure 6-6.

SERVICE
ENDPOINT
DESCRIPTOR

NextTD =
Tail Pointer?

NO

Set
NO—p» Filled =1
(Bulk or Control)

Periodic List?

YES

v

Service P
Transfer Descriptor

A 4

P FINISHED ,‘1

Figure 6-6: Endpoint Descriptor Service Flow

102

OpenHCI - Open Host Contraller Interface Specification for USB

When the Host Controller reads an Endpoint Descriptor, it first determinesif the descriptor should be
skipped. If ether the sKip bit or the Halt bit in the Endpoint Descriptor isa ‘1, the Endpoint
Descriptor is skipped and the Hogt Controller proceeds normally with the next Endpoint Descriptor or
the next list. If the Endpoint Descriptor is not skipped, the Host Controller performs a check to
determine if thereis a Trandfer Descriptor on the queue. If not, the Host Controller proceeds to the
next Endpoint Descriptor or the next list.

To determine if thereis a Transfer Descriptor on the queue that can be processed, the Host Controller
compares the Endpoint Descriptor’s TailPointer and NextTransfer Descriptor fidds. If thefiddsare
different, thereis a Transfer Descriptor available for processing. If they are equd, thereisnot avaid
Trandfer Descriptor ontheligt. If avaid Transfer Descriptor is present on the queue, the Host
Controller attempts to service that Transfer Descriptor. Service of the Transfer Descriptor involves
making only a single transaction attempt.

6.4.4 Transfer Descriptor Processing

Transfer Descriptor processing is the fundamenta operation performed by aHost Cortroller. The
sarvice flow for sarvicing a Transfer Descriptor is shown in Figure 6-7. The rest of this section
describes the steps necessary for completing service of a Transfer Descriptor.

6.4.4.1 Isochronous Relative Frame Number Calculation

When processing an Isochronous Transfer Descriptor, the Host Controller must caculate the relative
frame number. This caculation determines which, if any, packet will be sent during the current frame.
This calculation is described in Section 4.3.2.1.

6.4.4.2 Packet Address and Size Calculation

When processing an Isochronous Transfer Descriptor, the relative frame number (R, calculated as
described in Section 4.3.2.1) is used to sdlect two offset values, Offset[R] and Offsef[R+1]. If Ris
equd to the FrameCount field in the Transfer Descriptor, then Offsst[R+1] is (Buffer End+1).
Offst[R] is subtracted from Offsef[R+1] to get the Sze of the data buffer which should not be larger
than M aximumPacketSize from the Endpoint Descriptor (thisis not checked by the Host Controller
and tranamission problems occur if software violaesthis redtriction). Theinitia address of the transfer
is determined from Offs&t[R]. If bit 12 (the 13th LSb) of Offs[R] is 0, then theinitial buffer address
residesin the physcd memory page specified in Buffer Page0 of the Isochronous Transfer Descriptor.
If bit 12 is 1, then the initid buffer address will reside in the physica page indicated by the upper 20 bits
of Buffer End. When the upper 20 bits are selected, the addressis completed by using the low 12 bits
of Offset[R] asthe low 12 bits of the address. If bit 12 of both Offset[R] and Offset[R+1] are the
same, then the packet transfer will not cross a page boundary. If they are different (only caseis bit 12 of
Offset[R] = 0 and bit 12 of Offsef[R+1] = 1), then the packet transfer will cross a page boundary.

103

OpenHCI - Open Host Contraller Interface Specification for USB

SERVICE
TRANSFER ITD
DESCRIPTOR
A 4
Compare Number with Frame - Number YES)
Frame in ED >N? (Error)
NO
NO
Calculate PACKET (Frame - Number Frame - Number YES >
- — - ?
Addr and Size provides Offset) <07 (Early)
Read PACKET o
YES — | from memory P Perform SOF check
NO
Perform SOF check Time available? NO—Pp»

YES
. . Execute USB Execute USB
? —’
Time available® YES Transaction Transaction
A
NO Write PACKET
to memory
A 4
P Status Writeback <
TD Complete? NO FINISHED
A
YES
l > Retire TD <

Figure 6-7: Transfer Descriptor Service Flow

104

OpenHCI - Open Host Contraller Interface Specification for USB

When the Host Controller fetches a Generd Transfer Descriptor, it gets the address of the next memory
location be accessed from CurrentBuffer Pointer. If CurrentBuffer Pointer is 0, then the packet Size
will be zero, regardless of the setting of MaximumPacketSize in the Endpoint

Descriptor. Asthe datais transferred to/from the CurrentBuffer Pointer address, the

CurrentBuffer Pointer value might cross a page boundary. If it does, the upper 20 bits of BufferEnd
are subgtituted for the current upper 20 bits of CurrentBuffer Pointer. This page boundary crossing
may occur during a packet transfer (i.e., asingle packet may cross a page boundary.)

The maximum amount of datathat will be sent to or accepted from the device is determined by the
gmdler of MaximumPacketSize in the Endpoint Descriptor or by the remaining buffer sze (given by
the Generd Trandfer Descriptor). The remaining buffer sze isfound by subtracting the

CurrentBuffer Pointer from Buffer End. The subtraction may be performed by using two 13- bit
terms A and B. The mogt sgnificant bit of A is set to O if CurrentBuffer Pointer and BufferEnd are
identicd in their most sgnificant 20 bits (i.e., they indicate the same physicd page in memory) and set to
1if they differ. The most Sgnificant bit of B isset to 0. The low order 12 bits of A and B are the low
order 12 bits of Buffer End and CurrentBuffer Pointer respectively. Totheresultsof A - B add 1 to
get the remaining space in the buffer.

6.4.4.3 Packet Transfer Time Check

Once the Host Controller determines a packet’s Sze, it must check to seeif the packet transmission can
occur over the USB before the end of the frame. Thisis determined by comparing the bit times
remaining before the end of the frame with the bit time requirement of the packet to be transmitted. If
the bit time requirement of the packet islarger than the bit times remaining in the frame, the transaction
may not be initiated. This ensures that the Host Controller will never be respongble for causng a
babble condition on the bus. For full speed transactions, the Host Controller usesthe Largest Data
Packet Counter to determine if a given packet can be transferred.

For low speed transactions, regardless of the data Size, the Host Controller compares the current vaue
of the FrameRemaining fidd of HCFmRemaining with the vaue of the L SThreshold fidd of the
HcLSThreshold regigter. If FrameRemaining islessthan L SThreshold, the low speed transaction is
not started on the bus.

105

OpenHCI - Open Host Contraller Interface Specification for USB

6.4.4.4 Largest Data Packet Counter Operation

At each frame boundary, the Largest Data Packet Counter is loaded with the value of the

FSL argestDataPacket fiddin HcFminterval (at the same time FrameRemaining isloaded with the
vauedof Framelnterval). For every 7 bit times on the bus, the counter is decremented by 6 because
the number of useful bits does not diminish a the same rate as bus bit times pass due to bit stuffing.
When the Host Controller loads a Transfer Descriptor, the worst case number of bit times for the data
trandfer on the busis known. Thisvaueis amply the byte count multiplied by 8, using the
MaximumPacketSize byte count for reads (the transaction overhead and the frame overhead are
accounted for in the initid value of the counter). If the bit count required is greater than the remaining bit
count in the Largest Data Packet Counter, the transfer is not started. When the transfer is not Started,
there is no status writeback to the Transfer Descriptor.

6.4.45 Status Writeback

At the completion of atransaction attempt, the Host Controller performs a status writeback to the
Transfer Descriptor. The information written back differs depending on what type of Transfer
Descriptor is being serviced.

6.4.4.5.1 General Transfer Descriptor Status Writeback

Genera Transfer Descriptors are updated after every attempted transaction. There are four fields thet
require updating after atransaction attempt. They are the CompletionCode fidd, the
DataT oggleContral field, the CurrentBuffer Pointer field, and occasondly the Error Count field.

The DataT oggleControl field must be updated to reflect the data toggle for the next trandfer. If the
packet just transmitted completed successfully, the Host Controller sets the MSb and togglesthe LSb
of DataT oggleControl field to reflect a new value for the next packet. If the current packet did not
complete with aproper ACK or NAK, the field should not be changed.

The CurrentBuffer Pointer must be updated to reflect the amount of data transferred in the current
packet if the transmission ended with aproper ACK or an error. If the Host Controller received an
ACK or aNAK with an incorrect datatoggle, the CurrentBuffer Pointer should not be updated
because the Host Controller is required to retry the current packet. If the CurrentBuffer Pointer
requires an update, the number of bytes transmitted in the packet should be added to the current value
of the CurrentBuffer Pointer field. If the packet crossed a page boundary, the upper 20 bits of the
CurrentBuffer Pointer should be updated with the upper 20 bits of the Buffer End fidld to reflect the
changein page base address. The lower 12 bits of the CurrentBuffer Pointer will roll over correctly
with anorma addition to reflect the new packet address.

106

OpenHCI - Open Host Contraller Interface Specification for USB

If there was an error in the packet transmission, the Error Count field must be incremented. If the
ErrorCount is 2 and another error occurs, the Transfer Descriptor is retired with the error code
reflected in the CompletionCode fidd.

The CompletionCode field of a Generd Transfer Descriptor is updated after every attempted
transaction whether successful or not. If the transaction was successful, the CompletionCode fidd will
be set to “No Error.” Otherwise, it will be set according to the error type.

When an endpoint returns aNAK handshake for atransmission, al Generd Transfer Descriptor fields
will be the same after the transaction as they were when the transaction began. The Host Controller
does not need to make any changes.

6.4.4.5.2 Isochronous Transfer Descriptor Status Writeback

The Host Controller updates the Offset[R] field after packet transmission using the Packet Status Word.
For an OUT packet, the Size field isset to O if thereisno error. For an IN, the Size fidd will reflect
the actud number of bytes written to the memory buffer. Regardiess of transfer direction, the
CompletionCode fidld is updated to reflect the outcome of the transmission.

6.4.4.6 Transfer Descriptor Retirement

When atransfer descriptor is complete (all data sent/received) or an error condition occurs, the
Transfer Descriptor must beretired. Severd actions are required to retire a Transfer Descriptor. The
Host Controller must place the Transfer Descriptor on the Done Queue and update the value of the
Done Queue Interrupt Counter. In addition, the Host Controller must update the Endpoint Descriptor
to reflect the changes to the Next Transfer Descriptor pointer, the DataT oggleCarry fidd, and
potentialy the Halt fidd.

To dequeue the Transfer Descriptor, the Host Controller copies the current Transfer Descriptor’s
NextTransfer Descriptor fidd to the NextTransfer Descriptor of the Endpoint Descriptor.

Following the dequeuing of the Transfer Descriptor from the Endpoint Descriptor Queue, the Transfer
Descriptor is enqueued to the Done Queue. To accomplish this, the Host Controller first writes the
vaue of the HcDoneHead to the Next Transfer Descriptor field of the Transfer Descriptor being
enqueued. Second, the HcDoneHead is written with the address of the Transfer Descriptor being
enqueued.

The Host Controller must also update the DataT oggleCarry field of the Endpoint Descriptor. The
DataT oggleCarry field should reflect the last data toggle vaue from the retired Transfer Descriptor. I
the Transfer Descriptor is being retired because of an error, the Host Controller must update the Halt
bit of the Endpoint Descriptor.

107

OpenHCI - Open Host Contraller Interface Specification for USB

To complete the Transfer Descriptor retirement, the Host Controller updates the Done Queue Interrupt
Counter. TheInterruptDelay fidd of the Transfer Descriptor specifies the maximum number of SOFs
that may occur before the Host Controller writes the HcDoneHead to the HCCA and generates an
interrupt. If the vaue of the InterruptDelay field is 111b, the Host Controller Driver does not require
an interrupt for the Transfer Descriptor and the Done Queue Interrupt Counter is left unchanged. If the
vaue of the InterruptDelay fidd is not 111b, but is greater than or equa to the current value of the
Done Queue Interrupt Counter, the counter is aso left unchanged. In this case, another Transfer
Descriptor aready on the Done Queue requires an interrupt earlier than the Transfer Descriptor being
retired. If the value of the InterruptDelay field isnot 111b, but is less than the current vaue of the
Done Queve Interrupt Counter, the counter is loaded with the vaue of the I nterruptDelay fidd. Inthis
case, the Transfer Descriptor being retired requires an interrupt earlier than dl of the Transfer
Descriptors currently on the Done Queue. If the Transfer Descriptor is being retired with an error, then
the Done Queue Interrupt Counter is cleared asif the I nterruptDelay field were zero.

6.4.5 Done Queue

Occasionally (as determined by the Done Queue Interrupt Counter), when the Done Queue contains
one or more Transfer Descriptors, the Host Controller writes the current value of HcDoneHead into the
HccaDoneHead immediatdy following aframe boundary and generates an interrupt. These actions are
taken s0 that the Host Controller Driver can complete the processing of retired Transfer Descriptors.
After the HcDoneHead vaue is written to the HCCA, the Host Controller resets the value of
HcDoneHead to ‘0" and sets the Writeback DoneHead bit located in the HclnterruptStatus register
to‘1l’ Whilethe WritebackDoneHead bit is s, the Host Controller may not write HcDoneHead to
the HCCA. The WritebackDoneHead hit is cleared by the Host Controller Driver when it is ready to
receive another Done Queue from the Host Controller.

6.4.5.1 Done Queue Interrupt Counter

The Host Controller maintains a 3-hit counter which is used to determine how often the HcDoneHead
register vaue must be written to HccaDoneHead. The counter isinitidized with avaue of 111b at
software reset, hardware reset, and when the Host Controller transitions to the USBOPERATIONAL
State.

The counter functions when the Host Controller isin the USBOPERATIONAL State by decrementing at
every frame boundary smultaneous with the incrementing of the FrameNumber fidd in HCFmNumber
if the current value of the counter is other than 111b or 0. If the current value of the counter is 111b or
0, the counter is effectively disabled and does not decrement.

108

OpenHCI - Open Host Contraller Interface Specification for USB

The Host Contraller checks the value of the counter during the last bit time of every frame when in the
USBOPERATIONAL date. If the value of the counter is O at that time, the Host Controller checks the
current vaue of the WritebackDoneHead hitin HelnterruptStatus. If WritebackDoneHead is*0,
immediately following the frame boundary, the Host Controller writes the HcDoneHead register value
to HccaDoneHead, sets WritebackDoneHead to ‘1, and resets the counter to 111b. If
WritebackDoneHead is*1,” the Host Controller takes no further action until the end of the next frame
when it performs the same checks again.

6.5 Interrupt Processing

Interrupts are the communication method for HC-initiated communication with the Host Controller
Driver. There are severa events which may trigger an interrupt from the Host Controller. Each specific
event sats a specific bit in the HelnterruptStatus register. The Host Controller requests an interrupt
when al three of the following conditions are met:

?? TheM agterInterruptEnable bitin HcControl issetto ‘1.

?? Abitin HclnterruptStatusissetto ‘1.

?7? The corresponding enable bit in HclnterruptEnable for the HelnterruptStatus bit is set to
‘1.

If the Host Controller supports an SMI pin, the interrupts caused by most events are routable, based on
the value of the InterruptRouting bit of the HcControl register, to either the INT pin or the SMI pin.
Enabled interrupt events causes an interrupt to be sgnaed on the INT pin when the InterruptRouting
bitisa‘0 and sgnded on the SMI pin if the InterruptRouting bitisa‘l.” However, OpenHCI Host
Controllers are not required to implement an SMI pin. If aHost Controller does not implement an SMI
pin and the InterruptRouting bitisa‘1,” interrupts are

not generated. The notable exception for interrupt routing is the Owner shipChange event described in
Section 6.5.8 which is dways routed to the SMI pin.

Each of the following subsections describes a specific event, and therefore a specific bit, represented in
the HclnterruptStatus register.

6.5.1 SchedulingOverrun Event

When a scheduling overrun occurs, the Host Controller sets the SchedulingOverrun bit following the
completion of the next HccaFrameNumber update. A scheduling overrun occurs when the Host
Controller determines that the Periodic list for the current frame cannot be completed before the end of
the frame.

109

OpenHCI - Open Host Contraller Interface Specification for USB

6.5.2 WritebackDoneHead Event

Periodicaly, the Host Controller is required to update HccaDoneH ead with the vaue of the
HcDoneHead register (see Section 6.4.5). When the write of HcDoneHead to HccaDoneH ead
completes, the Host Controller sets the WritebackDoneHead bit. The corresponding interrupt
(if enabled) will inform the Host Controller Driver thet it must service the Done Queue.

6.5.3 StartOfFrame Event

When FrameRemaining isloaded with Framel nterval, the Hogt Controller setsthe StartOfFrame
bit following completion of the next HccaFrameNumber update. This correspondsto aframe
boundary. The Host Contraller Driver will normaly disable this event, enabling the event when it
requires adeterminigtic interrupt at a frame boundary.

6.5.4 ResumeDetected Event

A resume detected event occurs when the Root Hub detects resume signaling on the USB bus. The
Host Contraller will set the ResumeDetected bit when resume sgnaling is detected.

A ResumeDetected interrupt is only possiblein the USBSUSPEND state. A resume event can be either
an upstream resume signd or a connect/disconnect detection at a port. The conmnect/ disconnect resume
event is enabled by the RemoteWakeupEnable in the HcRhSatus regigter. If aport is ether in the
progress of sdectively resuming or has completed the selective resume and set
PortSuspendStatusChange when the Root Hub enters the USBSUSPEND dtate, the port resumeis
cleared and the hub resume, ResumeDetected, is generated.

Note: A ResumeDetected interrupt corresponds to hardware initiated USBSUSPEND to USBRESUME
trangtion.

6.5.5 UnrecoverableError Event

The Host Controller setsthe Unrecover ableError bit when it detects a system error not related to
USB or an error that cannot be reported in any other way.

6.5.6 FrameNumberOverflow Event

When the MSb (bit 15) of the FrameNumber fidd of HcCFmNumber changes vdue, the
FrameNumber Overflow bit is set by the Host Controller following the next HccaFrameNumber
update. The event occurson boththe*l’ to ‘0’ or the*0’ to ‘1’ trandtion. Thisevent dlowsthe Host

Controller Driver to perform any necessary manipulation of its software based frame number to ensure
that number is correct.

110

OpenHCI - Open Host Contraller Interface Specification for USB

6.5.7 RootHubStatusChange Event

The Host Controller sets the RootHubStatusChange bit whenever thereis achangeto any bit in
HcRhSatus or HcRhPortSatus. Any changes in these registers define a change in status that must be
communicated to the Host Controller Driver. Since OpenHCI provides aregister-leve interface to the
Root Hub, the need for Root Hub Trandfer Descriptorsis eliminated. This provides for amore efficient
Root Hub interface, but does not provide the Host Controller Driver agood mechanism for polling the
Root Hub on a periodic bass. To compensate for the lack of a

good polling mechanism, the Host Controller ddlivers an interrupt on every Root Hub status change.

6.5.8 OwnershipChange Event

The OwnershipChange bit is set by the Host Controller when the Host Controller Driver setsthe
Owner shipChangeRequest hit in the HcCommandStatus register. Thisensuresthat an interrupt is
generated (unlessit is masked) whenever ownership of the Host Controller is passed to and from the
operating system’s Host Controller Driver and any SMM-based Host Controller Driver in the system.
All interrupts resulting from an OwnershipChange event are not routable with the I nterruptRouting bit
of the HcControl register and are ddivered on the SMI pin only. If the Host Controller does not
implement an SMI pin, interrupts will not be generated a al on an OwnershipChange event.

6.6 Root Hub

The Root Hub functional operation is defined by the USB Specification. The OpenHCI Specification
only defines aregiger-leve interface which the HCD uses to emulate sandard hub endpoint
communication. See chapter 7 for adescription of the register interface definition.

The Root Hub USB reset and resume signding are controlled by the HostContr oller Functional State
bits. The HCD isrespongible for dl timing associated with these operations. The port reset and resume
sgnd timing is controlled by the hardware.

111

OpenHCI - Open Host Contraller Interface Specification for USB

7. OPERATIONAL REGISTERS

The Hogt Controller (HC) contains a set of on-chip operationd registers which are mapped into a
noncacheable portion of the system addressable space. These registers are used by the Host Controller
Driver (HCD). According to the function of these registers, they are divided into four partitions,
gpecifically for Control and Status, Memory Pointer, Frame Counter and Root Hub. All of the registers
should be read and written as Dwords.

Reserved bits may be alocated in future releases of this specification. To ensure interoperability, the
Host Controller Driver that does not use a reserved field should not assume that the reserved fidd
contains 0. Furthermore, the Host Controller Driver should always preserve the vaue(s) of the
reserved fiedld. When a R/W register is modified, the Host Controller Driver should first reed the
register, modify the bits desired, then write the register with the reserved bits till containing the read
vaue. Alternatively, the Host Controller Driver can maintain an in-memory copy of previoudy written
vaues that can be modified and then written to the Host Controller register. When awrite to set/clear
register iswritten, bits written to reserved fields should be O.

Table 7-1: Host Controller Operational Registers

Offset ;

0 HcRevision

4 HcControl

8 HcCommandStatus
C HclinterruptStatus
10 HclinterruptEnable
14 HclinterruptDisable
18 HcHCCA

1C HcPeriodCurrentED
20 HcControlHeadED
24 HcControlCurrentED
28 HcBulkHeadED
2C HcBulkCurrentED
30 HcDoneHead

34 HcFminterval

38 HcFmRemaining
3C HcFmNumber

40 HcPeriodicStart
44 HcLSThreshold

112

OpenHCI - Open Host Contraller Interface Specification for USB

Table 7-1: Host Controller Operational Registers

Offset ;
48 HcRhDescriptorA
4C HcRhDescriptorB
50 HcRhStatus
54 HcRhPortStatus[1]
54+4*NDP HcRhPortStatus[NDP]

7.1 The Control and Status Partition
7.1.1 HcRevision Register

reserved REV

Figure 7-1: HcRevision Register

Read/Write
Key Reset | HCD HC Description
REV 10h R R Revision

This read-only field contains the BCD representation of the version
of the HCI specification that is implemented by this HC. For
example, a value of 11h corresponds to version 1.1. All of the HC
implementations that are compliant with this specification will have
a value of 10h.

7.1.2 HcControl Register

The HcControl register defines the operating modes for the Host Controller. Most of the fidldsin this
register are modified only by the Host Controller Driver, except HostContr oller Functional State and
RemoteWakeupConnected.

3 1
1 1

o O

mr W|o o

mr Ol|s o
= O

o o

reserved

ms xolor
0= x1o|eo
T —|o o
m—|w o
mr o[y o

nmToOI
T0nwwmO

Figure 7-2: HcControl Register

113

OpenHCI - Open Host Contraller Interface Specification for USB

Key

Reset

Read/Write

HCD

HC

Description

CBSR

00b

R/W

R

ControlBulkServiceRatio

This specifies the service ratio between Control and Bulk EDs.
Before processing any of the nonperiodic lists, HC must compare
the ratio specified with its internal count on how many nonempty
Control EDs have been processed, in determining whether to
continue serving another Control ED or switching to Bulk EDs. The
internal count will be retained when crossing the frame boundary. In
case of reset, HCD is responsible for restoring this value.

CBSR INo. of Control EDs Over Bulk EDs Served
0 1:1

1 2:1
2 3.1
3 4:1

PLE

Ob

R/W

PeriodicListEnable

This bit is set to enable the processing of the periodic list in the next
Frame. If cleared by HCD, processing of the periodic list does not
occur after the next SOF. HC must check this bit before it starts
processing the list.

Ob

R/W

IsochronousEnable

This bit is used by HCD to enable/disable processing of isochronous
EDs. While processing the periodic list in a Frame, HC checks the
status of this bit when it finds an Isochronous ED (F=1). If set
(enabled), HC continues processing the EDs. If cleared (disabled),
HC halts processing of the periodic list (which how contains only
isochronous EDs) and begins processing the Bulk/Control lists.
Setting this bit is guaranteed to take effect in the next Frame (not
the current Frame).

CLE

Ob

R/W

ControlListEnable

This bit is set to enable the processing of the Control list in the next
Frame. If cleared by HCD, processing of the Control list does not
occur after the next SOF. HC must check this bit whenever it
determines to process the list. When disabled, HCD may modify
the list. If HcControlCurrentED is pointing to an ED to be removed,
HCD must advance the pointer by updating HcControlCurrentED
before re-enabling processing of the list.

BLE

Ob

R/W

BulkListEnable

This bit is set to enable the processing of the Bulk list in the next
Frame. If cleared by HCD, processing of the Bulk list does not occur
after the next SOF. HC checks this bit whenever it determines to
process the list. When disabled, HCD may modify the list. If
HcBulkCurrentED is pointing to an ED to be removed, HCD must
advance the pointer by updating HcBulkCurrentED before re-enabling
processing of the list.

114

OpenHCI - Open Host Contraller Interface Specification for USB

Key

Reset

Read/Write

HCD

HC

Description

HCFS

00b

R/W

R/W

HostControllerFunctionalState for USB

00b: USBRESET

01b: USBRESUME

10b: USBOPERATIONAL

11b: USBSUSPEND

A transition to USBOPERATIONAL from another state causes SOF
generation to begin 1 ms later. HCD may determine whether HC has
begun sending SOFs by reading the StartofFrame field of
HclnterruptStatus.

This field may be changed by HC only when in the USBSUSPEND
state. HC may move from the USBSUSPEND state to the USBRESUME
state after detecting the resume signaling from a downstream port.
HC enters USBSUSPEND after a software reset, whereas it enters
USBRESET after a hardware reset. The latter also resets the Root
Hub and asserts subsequent reset signaling to downstream ports.

Ob

R/W

InterruptRouting

This bit determines the routing of interrupts generated by events
registered in HclinterruptStatus. If clear, all interrupts are routed to
the normal host bus interrupt mechanism. If set, interrupts are
routed to the System Management Interrupt. HCD clears this bit
upon a hardware reset, but it does not alter this bit upon a software
reset. HCD uses this bit as a tag to indicate the ownership of HC.

RwC

Ob

R/W

R/W

RemoteWakeupConnected

This bit indicates whether HC supports remote wakeup signaling. If
remote wakeup is supported and used by the system it is the
responsibility of system firmware to set this bit during POST. HC
clears the bit upon a hardware reset but does not alter it upon a
software reset. Remote wakeup signaling of the host system is
host-bus-specific and is not described in this specification.

RWE

Ob

R/W

RemoteWakeupEnable

This bit is used by HCD to enable or disable the remote wakeup
feature upon the detection of upstream resume signaling. When this
bit is set and the ResumeDetected bit in HclnterruptStatus is set, a
remote wakeup is signaled to the host system. Setting this bit has
no impact on the generation of hardware interrupt.

115

OpenHCI - Open Host Contraller Interface Specification for USB

7.1.3 HcCommandStatus Register

The HcCommandStatus register is used by the Host Controller to receive commandsissued by the
Hogt Controller Driver, aswdl asreflecting the current status of the Host Controller. To the Host
Controller Driver, it gppearsto be a"write to set” register. The Host Controller must ensure thet bits
written as*1’ become st in the register while bits written as ‘0’ remain unchanged in the register. The
Host Controller Driver may issue multiple distinct commands to the Host Controller without concern for
corrupting previoudy issued commands. The Host Controller Driver has norma read accessto dl bits.

The SchedulingOverrunCount field indicates the number of frames with which the Host Controller has
detected the scheduling overrun error. This occurs when the Periodic list does not complete before
EOF. When a scheduling overrun error is detected, the Host Controller increments the counter and sets
the SchedulingOverrun fidd in the HclnterruptStatus register.

3 1({11[olo|o|ofo
1 8(7 615 4(312|1]|0
reserved S reserved O[B|CH

(@] cl|L|L|C

C R|F|F|R

Figure 7-3: HcCommandStatus Register

Read/Write
Key Reset | HCD HC Description
HCR Ob R/W R/W | HostControllerReset

This bit is set by HCD to initiate a software reset of HC.
Regardless of the functional state of HC, it moves to the
USBSUSPEND state in which most of the operational registers are
reset except those stated otherwise; e.g., the InterruptRouting
field of HcControl, and no Host bus accesses are allowed. This
bit is cleared by HC upon the completion of the reset operation.
The reset operation must be completed within 10 ?s. This bit,
when set, should not cause a reset to the Root Hub and no
subsequent reset signaling should be asserted to its downstream
ports.

116

OpenHCI - Open Host Contraller Interface Specification for USB

Key

Reset

Read/Write

HCD

HC

Description

CLF

Ob

R/W

R/W

ControlListFilled

This bit is used to indicate whether there are any TDs on the
Control list. It is set by HCD whenever it adds a TD to an ED in
the Control list.

When HC begins to process the head of the Control list, it checks
CLF. Aslong as ControlListFilled is 0, HC will not start
processing the Control list. If CF is 1, HC will start processing the
Control list and will set ControlListFilled to 0. If HC finds a TD
on the list, then HC will set ControlListFilled to 1 causing the
Control list processing to continue. If no TD is found on the
Control list, and if the HCD does not set ControlListFilled, then
ControlListFilled will still be 0 when HC completes processing
the Control list and Control list processing will stop.

BLF

Ob

R/W

R/W

BulkListFilled

This bit is used to indicate whether there are any TDs on the Bulk
list. Itis set by HCD whenever it adds a TD to an ED in the Bulk
list.

When HC begins to process the head of the Bulk list, it checks
BF. As long as BulkListFilled is 0, HC will not start processing
the Bulk list. If BulkListFilled is 1, HC will start processing the
Bulk list and will set BF to 0. If HC finds a TD on the list, then HC
will set BulkListFilled to 1 causing the Bulk list processing to
continue. If no TD is found on the Bulk list, and if HCD does not
set BulkListFilled, then BulkListFilled will still be 0 when HC
completes processing the Bulk list and Bulk list processing will
stop.

OCR

Ob

R/W

R/W

OwnershipChangeRequest

This bit is set by an OS HCD to request a change of control of the
HC. When set HC will set the OwnershipChange field in
HclinterruptStatus. After the changeover, this bit is cleared and
remains so until the next request from OS HCD.

SOC

00b

R/W

SchedulingOverrunCount

These bits are incremented on each scheduling overrun error. Itis
initialized to 00b and wraps around at 11b. This will be
incremented when a scheduling overrun is detected even if
SchedulingOverrun in HclinterruptStatus has already been set.
This is used by HCD to monitor any persistent scheduling
problems.

7.1.4 HclinterruptStatus Register

This register provides status on various events that cause hardware interrupts. When an event occurs,
Hogt Controller sets the corresponding bit in this register. When abit becomes set, a hardware
interrupt is generated if the interrupt is enabled in the HelnterruptEnabl e register (see Section 7.1.5)
and the Master I nterruptEnable bit isset. The Host Controller Driver may clear specific bitsin this
register by writing ‘1’ to bit positionsto be cleared. The Host Controller Driver may not set any of
these bits. The Host Controller will never clear the bit.

117

OpenHCI - Open Host Contraller Interface Specification for USB

3|3|2 o|lo|o|ofoofo (o
1]0]9 716543210
0|0 reserved R[F [U|R|SW|S
C HIN[E|D|F|D|O
S|O H
C
Figure 7-4: HclnterruptStatus Register
Read/Write
Key Reset | HCD HC Description
SO Ob R/W | R/W | SchedulingOverrun
This bit is set when the USB schedule for the current Frame
overruns and after the update of HccaFrameNumber. A
scheduling overrun will also cause the SchedulingOverrunCount
of HcCommandStatus to be incremented.
WDH Ob R/W | R/W | WritebackDoneHead
This bit is set immediately after HC has written HcDoneHead to
HccaDoneHead. Further updates of the HccaDoneHead will not
occur until this bit has been cleared. HCD should only clear this
bit after it has saved the content of HccaDoneHead.
SF Ob R/W | R/W | StartofFrame
This bit is set by HC at each start of a frame and after the update
of HccaFrameNumber. HC also generates a SOF token at the
same time.
RD Ob R/W | R/W | ResumeDetected
This bit is set when HC detects that a device on the USB is
asserting resume signaling. It is the transition from no resume
signaling to resume signaling causing this bit to be set. This bit
is not set when HCD sets the USBRESUME state.
UE Ob R/W | R/W | UnrecoverableError
This bit is set when HC detects a system error not related to
USB. HC should not proceed with any processing nor signaling
before the system error has been corrected. HCD clears this bit
after HC has been reset.

118

OpenHCI - Open Host Contraller Interface Specification for USB

Key

Reset

Read/Write

HCD

HC

Description

FNO

Ob

R/W

R/W

FrameNumberOverflow

This bit is set when the MSb of HcFmNumber (bit 15) changes
value, from 0 to 1 or from 1 to 0, and after HccaFrameNumber has
been updated.

RHSC

Ob

R/W

R/W

RootHubStatusChange

This bit is set when the content of HcRhStatus or the content of
any of HcRhPortStatus[NumberofDownstreamPort] has
changed.

ocC

Ob

R/W

R/W

OwnershipChange

This bit is set by HC when HCD sets the
OwnershipChangeRequest field in HcCommandStatus. This
event, when unmasked, will always generate an System
Management Interrupt (SMI) immediately.

This bit is tied to Ob when the SMI pin is not implemented.

119

OpenHCI - Open Host Contraller Interface Specification for USB

7.1.5 HclinterruptEnable Register

Each enable bit in the HclnterruptEnabl e register corresponds to an associated interrupt bit in the
HclnterruptStatus register. The HclnterruptEnable register is used to control which events generate
ahardware interrupt. When abit is set in the HelnterruptStatus register AND the corresponding bit in
the HclnterruptEnable register is set AND the Master I nterruptEnable bit is s&t, then a hardware
interrupt is requested on the host bus.

Writing a'1' to abit in this register sets the corresponding bit, whereas writing a'0' to abit in this
register leaves the corresponding bit unchanged. On reed, the current value of this register is returned.

3|3 (2 0(0|0JjO|O(OfO|O
1(0([9 716]5]|413]2]|1|0
M|O reserved R(F |UIR|S|W|S
I|C H(N[E|D|F|D|O
E s|o H
C
Figure 7-5: HclnterruptEnable Register
Read/Write

Key Reset | HCD HC Description

SO Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Scheduling Overrun.

WDH Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to HcDoneHead Writeback.

SF Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Start of Frame.

RD Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Resume Detect.

UE Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Unrecoverable Error.

FNO Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Frame Number Overflow.

RHSC Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Root Hub Status Change.
ocC Ob R/W R 0 - Ignore
1 - Enable interrupt generation due to Ownership Change.

MIE Ob R/W R A ‘0" written to this field is ignored by HC. A '1' written to this
field enables interrupt generation due to events specified in the
other bits of this register. This is used by HCD as a Master
Interrupt Enable.

120

OpenHCI - Open Host Contraller Interface Specification for USB

7.1.6 HclinterruptDisable Register

Each disable hit in the HelnterruptDisabl e register corresponds to an associated interrupt bit in the
HclnterruptStatus register. The HclnterruptDisable register is coupled with the HelnterruptEnable
register. Thus, writing a'1' to ahit in this register clears the corresponding bit in the
HclnterruptEnable register, whereas writing a'0' to a bit in this register leaves the corresponding bit in
the HclnterruptEnable register unchanged. On reed, the current vaue of the HelnterruptEnable
register is returned.

3(3(2 o|lo|o|ofo|ofo (o
1(0(9 716]5|413]|2|1]|0
M[O reserved R[F [U|R|S|W|S
I|C H(N|E|D|F|D|O
E S|O H
C
Figure 7-6: HclnterruptDisable Register
Read/Write

Key Reset | HCD HC Description

SO Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Scheduling Overrun.

WDH Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to HcDoneHead Writeback.

SF Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Start of Frame.

RD Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Resume Detect.

UE Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Unrecoverable Error.

FNO Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Frame Number Overflow.

RHSC Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Root Hub Status Change.
ocC Ob R/W R 0 - Ignore
1 - Disable interrupt generation due to Ownership Change.

MIE Ob R/W R A '0" written to this field is ignored by HC. A '1' written to this field
disables interrupt generation due to events specified in the other
bits of this register. This field is set after a hardware or software
reset.

121

OpenHCI - Open Host Contraller Interface Specification for USB

7.2 Memory Pointer Partition

7.2.1 HcHCCA Register

The HCHCCA register contains the physica address of the Host Controller Communication Area. The
Host Controller Driver determines the dignment restrictions by writing dl 1sto HCHCCA and reading
the content of HCHCCA. The dignment is evaluated by examining the number of zeroesin the lower
order bits. The minimum adignment is 256 bytes; therefore, bits O through 7 must dways return'0’ when
read. Detailed description can be found in Chapter 4. Thisareais used to hold the control structures
and the Interrupt table that are accessed by both the Host Controller and the Host Controller Driver.

3 oo 0
1 8|7 0
HCCA 0
Figure7-7: HCHCCA Register
Read/Write
Key Reset | HCD HC Description
HCCA Oh R/W R This is the base address of the Host Controller
Communication Area.

7.2.2 HcPeriodCurrentED Register

The HcPeriodCurrentED register contains the physical address of the current Isochronous or Interrupt

Endpoint Descriptor.
3 olo 0
1 413 0
PCED 0
Figure 7-8: HcPeriodCurrentED Register
Read/Write
Key Reset | HCD HC Description
PCED Oh R R/W | PeriodCurrentED

This is used by HC to point to the head of one of the Periodic lists
which will be processed in the current Frame. The content of this
register is updated by HC after a periodic ED has been
processed. HCD may read the content in determining which ED
is currently being processed at the time of reading.

122

OpenHCI - Open Host Contraller Interface Specification for USB

7.2.3 HcControlHeadED Register

The HcControlHeadED register contains the physica address of the first Endpoint Descriptor of the
Contral lig.

CHED 0

Figure 7-9: HcControlHeadED Register

Read/Write
Key Reset | HCD HC Description
CHED Oh R/W R ControlHeadED

HC traverses the Control list starting with the HcControlHeadED
pointer. The content is loaded from HCCA during the initialization
of HC.

7.2.4 HcControlCurrentED Register

The HcControl CurrentED register contains the physica address of the current Endpoint Descriptor of
the Contral list.

CCED 0

Figure 7-10: HcControlCurrentED Register

Read/Write
Key Reset | HCD HC Description
CCED Oh R/W R/W | ControlCurrentED

This pointer is advanced to the next ED after serving the present
one. HC will continue processing the list from where it left off in
the last Frame. When it reaches the end of the Control list, HC
checks the ControlListFilled of in HcCommandStatus. If set, it
copies the content of HcControlHeadED to HcControlCurrentED
and clears the bit. If not set, it does nothing. HCD is allowed to
modify this register only when the ControlListEnable of
HcControl is cleared. When set, HCD only reads the
instantaneous value of this register. Initially, this is set to zero to
indicate the end of the Control list.

123

OpenHCI - Open Host Contraller Interface Specification for USB

7.2.5 HcBulkHeadED Register
The HcBulkHeadED register contains the physical address of the first Endpoint Descriptor of the Bulk

lig.
3 0]o 0
1 43 0
BHED 0
Figure 7-11: HcBulkHeadED Register
Read/Write
Key Reset | HCD HC Description
BHED Oh R/W R BulkHeadED

HC traverses the Bulk list starting with the HcBulkHeadED
pointer. The content is loaded from HCCA during the initialization
of HC.

7.2.6 HcBulkCurrentED Register

The HcBulkCurrentED register contains the physical address of the current endpoint of the Bulk ligt.
Asthe Bulk list will be served in around-robin fashion, the endpoints will be ordered according to their

insertion to the lis.
3 oo 0
1 403 0
BCED 0
Figure 7-12: HcBulkCurrentED Register
Read/Write
Key Reset | HCD HC Description
BCED Oh R/W | R/W | BulkCurrentED

This is advanced to the next ED after the HC has served the
present one. HC continues processing the list from where it left
off in the last Frame. When it reaches the end of the Bulk list, HC
checks the ControlListFilled of HcControl. If set, it copies the
content of HcBulkHeadED to HcBulkCurrentED and clears the bit.
If it is not set, it does nothing. HCD is only allowed to modify this
register when the BulkListEnable of HcControl is cleared. When
set, the HCD only reads the instantaneous value of this register.
This is initially set to zero to indicate the end of the Bulk list.

124

OpenHCI - Open Host Contraller Interface Specification for USB

7.2.7 HcDoneHead Register

The HcDoneHead register contains the physica address of the last completed Transfer Descriptor that
was added to the Done queue. In norma operation, the Host Controller Driver should not need to read
this register as its content is periodicaly written to the HCCA.

3 0|0 0
1 4|3 0

DH 0

Figure 7-13: HcDoneHead Register

Read/Write
Key Reset | HCD HC Description
DH Oh R R/W | DoneHead

When a TD is completed, HC writes the content of HcDoneHead
to the NextTD field of the TD. HC then overwrites the content of
HcDoneHead with the address of this TD.

This is set to zero whenever HC writes the content of this register
to HCCA. It also sets the WritebackDoneHead of
HclnterruptStatus.

7.3 Frame Counter Partition

7.3.1 HcFminterval Register

The HcFminterval register contains a 14-hit value which indicates the bit time interva in aFrame, (i.e,
between two consecutive SOFs), and a 15-bit vaue indicating the Full Speed maximum packet size that
the Host Controller may transmit or receive without causing scheduling overrun. The Host Controller
Driver may carry out minor adjustment on the Framel nterval by writing a new value over the present
one at each SOF. This provides the programmability necessary for the Host Controller to synchronize
with an externd clocking resource and to adjust any unknown locd clock offst.

3|3 1 11 1 0
1|0 6 54 3 0
F FSMPS reserved Fl

|

T

Figure 7-14: HcFminterval Register

125

OpenHCI - Open Host Contraller Interface Specification for USB

Read/Write
Key Reset | HCD | HC Description
Fl 2EDFh | R/W R Framelnterval

This specifies the interval between two consecutive SOFs in
bit times. The nominal value is set to be 11,999.

HCD should store the current value of this field before
resetting HC. By setting the HostControllerReset field of
HcCommandStatus as this will cause the HC to reset this
field to its nominal value. HCD may choose to restore the
stored value upon the completion of the Reset sequence.
FSMPS TBD R/W R FSLargestDataPacket

This field specifies a value which is loaded into the Largest
Data Packet Counter at the beginning of each frame. The
counter value represents the largest amount of data in bits
which can be sent or received by the HC in a single
transaction at any given time without causing scheduling
overrun. The field value is calculated by the HCD.

FIT Ob R/W R FramelntervalToggle

HCD toggles this bit whenever it loads a new value to
Framelnterval.

7.3.2 HcFmRemaining Register

The HcFmRemaining register is a 14-bit down counter showing the bit time remaining in the current
Frame.

3|3 11 0
1|0 4|3 0
F reserved FR
R
T
Figure 7-15: HcFmRemaining Register
Read/Write
Key Reset | HCD HC Description
FR Oh R R/W | FrameRemaining

This counter is decremented at each bit time. When it reaches
zero, it is reset by loading the Framelnterval value specified in
HcFminterval at the next bit time boundary. When entering the
USBOPERATIONAL state, HC re-loads the content with the
Framelnterval of HcFminterval and uses the updated value from
the next SOF.

FRT Ob R R/W | FrameRemainingToggle

This bit is loaded from the FramelntervalToggle field of
HcFminterval whenever FrameRemaining reaches 0. This bit is
used by HCD for the synchronization between Framelnterval
and FrameRemaining.

126

OpenHCI - Open Host Contraller Interface Specification for USB

7.3.3 HcFmNumber Register

The HCFmNumber register is a 16-bit counter. It provides atiming reference among events happening
in the Host Controller and the Host Controller Driver. The Host Controller Driver may use the 16-bit
vaue specified in this register and generate a 32- bit frame number without requiring frequent accessto

the regigter.
3 1|1 0
1 6|5 0
reserved FN
Figure 7-16: HcFmNumber Register
Read/Write
Key Reset | HCD | HC Description
FN Oh R R/W | FrameNumber

This is incremented when HcFmRemaining is re-loaded. It will be
rolled over to Oh after ffffh. When entering the USBOPERATIONAL
state, this will be incremented automatically. The content will be
written to HCCA after HC has incremented the FrameNumber at
each frame boundary and sent a SOF but before HC reads the first
ED in that Frame. After writing to HCCA, HC will set the
StartofFrame in HclnterruptStatus.

7.3.4 HcPeriodicStart Register

The HcPeriodicSart register has a 14-bit programmable vaue which determines when isthe earliest
time HC should start processing the periodic lis.

3 1|1 0
1 43 0
reserved PS
Figure7-17: HcPeriodicStart Register
Read/Write
Key Reset | HCD HC Description
PS Oh R/W R PeriodicStart

After a hardware reset, this field is cleared. This is then set by
HCD during the HC initialization. The value is calculated roughly
as 10% off from HcFminterval.. A typical value will be 3E67h.
When HcFmRemaining reaches the value specified, processing of
the periodic lists will have priority over Control/Bulk processing.
HC will therefore start processing the Interrupt list after completing
the current Control or Bulk transaction that is in progress.

127

OpenHCI - Open Host Contraller Interface Specification for USB

7.3.5 HcLSThreshold Register

The HcLSThreshold register contains an 11-bit value used by the Host Controller to determine whether
to commit to the transfer of amaximum of 8-byte LS packet before EOF. Neither the Host Controller
nor the Host Controller Driver are dlowed to change this vaue.

3 1)1 0
1 2|1 0

reserved LST

Figure7-18: HcL SThreshold Register

Read/Write
Key Reset | HCD HC Description
LST 0628h | R/W R LSThreshold

This field contains a value which is compared to the
FrameRemaining field prior to initiating a Low Speed
transaction. The transaction is started only if
FrameRemaining ? this field. The value is calculated by
HCD with the consideration of transmission and setup
overhead.

7.4 Root Hub Partition

All regigersincluded in this partition are dedicated to the USB Root Hub which isan integrd part of the
Host Controller though till afunctiondly separate entity. The HCD emulates USBD accesses to the
Root Hub viaaregiger interface. The HCD maintains many USB-defined hub features which are not
required to be supported in hardware. For example, the Hub's Device, Configuration, Interface, and
Endpoint Descriptors are maintained only in the HCD aswell as some Stic fieds of the Class
Descriptor. The HCD adso maintains and decodes the Root Hub's device address as well as other
trivia operations which are better suited to software than hardware.

The Root Hub register interface is otherwise developed to maintain smilarity of bit organization and
operation to typica hubs which are found in the sysem. Below are four register definitions:
HcRhDescriptor A, HcRhDescriptor B, HcCRhStatus, and HecRhPortStatug 1: NDP] . Each regigter is
read and written asaDword. These registers are only written during initiaization to correspond with
the system implementation. The HcRhDescriptor A and HcRhDescriptor B registers should be
implemented such that they are writegble regardless of the HC USB state. HcRhSatus and
HcRhPortSatus must be writegble during the USBOPERATIONAL state.

Note: IS denotes an implementation-specific reset value for that field.

128

OpenHCI - Open Host Contraller Interface Specification for USB

7.4.1 HcRhDescriptorA Register

The HcRhDescriptor A regigter isthe first register of two describing the characteristics of the Root Hub.
Reset vdues are implementation-specific. The descriptor length (11), descriptor type (TBD), and hub
controller current (O) fields of the hub Class Descriptor are emulated by the HCD. All other fidlds are
located in the HcRhDescriptor A and HcRhDescriptor B registers.

POTPGT

Reserved NDP

- Olor
n oV Z|oo
Z W U|x o

= leoNel I

TOOZIdeE

Figure 7-19: HcRhDescriptorA Register

Field

Power
On
Reset

Read/Write

HCD

HC

Description

NDP

R

R

NumberDownstreamPorts

These bits specify the number of downstream ports supported by
the Root Hub. It is implementation-specific. The minimum
number of ports is 1. The maximum number of ports supported by
OpenHCl is 15.

NPS

R/W

NoPowerSwitching
These bits are used to specify whether power switching is
supported or port are always powered. It is implementation-
specific. When this bit is cleared, the PowerSwitchingMode
specifies global or per-port switching.

0: Ports are power switched

1: Ports are always powered on when the HC is powered on

PSM

R/W

PowerSwitchingMode

This bit is used to specify how the power switching of the Root
Hub ports is controlled. It is implementation-specific. This field is
only valid if the NoPowerSwitching field is cleared.

0: all ports are powered at the same time.

1: each port is powered individually. This mode allows port
power to be controlled by either the global switch or per-port
switching. If the PortPowerControlMask bit is set, the
port responds only to port power commands
(Set/ClearPortPower). If the port mask is cleared, then
the port is controlled only by the global power switch
(Set/ClearGlobalPower).

DT

Ob

DeviceType

This bit specifies that the Root Hub is not a compound device.
The Root Hub is not permitted to be a compound device. This
field should always read/write 0.

129

OpenHCI - Open Host Contraller Interface Specification for USB

OCPM IS R/W R OverCurrentProtectionMode

This bit describes how the overcurrent status for the Root Hub
ports are reported. At reset, this fields should reflect the same
mode as PowerSwitchingMode. This field is valid only if the
NoOverCurrentProtection field is cleared.

0: over-current status is reported collectively for all downstream

ports
1: over-current status is reported on a per-port basis
NOCP IS R/W R NoOverCurrentProtection

This bit describes how the overcurrent status for the Root Hub
ports are reported. When this bit is cleared, the
OverCurrentProtectionMode field specifies global or per-port
reporting.

0: Over-current status is reported collectively for all

downstream ports
1: No overcurrent protection supported
POTPGT IS R/W R PowerOnToPowerGoodTime

This byte specifies the duration HCD has to wait before
accessing a powered-on port of the Root Hub. It is
implementation-specific. The unit of time is 2 ms. The duration is
calculated as POTPGT * 2 ms.

7.4.2 HcRhDescriptorB Register

The HcRhDescriptor B register is the second register of two describing the characterigtics of the Root
Hub. These fidds are written during initidization to correspond with the system implementation. Reset
vaues are implementation-specific.

PPCM

DR

Figure 7-20: HcRhDescriptorB Register

130

OpenHCI - Open Host Contraller Interface Specification for USB

Power Read/Write

-On
Field Reset | HCD HC Description
DR IS R/W R DeviceRemovable

Each bit is dedicated to a port of the Root Hub. When cleared,
the attached device is removable. When set, the attached device
is not removable.

bit 0: Reserved

bit 1: Device attached to Port #1

bit 2: Device attached to Port #2

bit15: Device attached to Port #15

PPCM IS R/W R PortPowerControlMask

Each bit indicates if a port is affected by a global power control
command when PowerSwitchingMode is set. When set, the
port's power state is only affected by per-port power control
(Set/ClearPortPower). When cleared, the port is controlled by
the global power switch (Set/ClearGlobalPower). If the device
is configured to global switching mode
(PowerSwitchingMode=0), this field is not valid.

bit 0: Reserved

bit 1: Ganged-power mask on Port #1

bit 2: Ganged-power mask on Port #2

bitl5: Ganged-power mask on Port #15

7.4.3 HcRhStatus Register

The HcRhSatus register is divided into two parts. The lower word of a Dword represents the Hub
Status fidld and the upper word represents the Hub Status Change fidld. Reserved bits should
aways be written'0'.

3|3 1(1(2(1]2 ofo|o
1|o 8|7|6|5(|4 2(1]0
C O|L[D OfL
R Reserved clrlr Reserved clp
W] I |SW, IS
E C|C|E

Figure 7-21: HcRhStatus Register

131

OpenHCI - Open Host Contraller Interface Specification for USB

Root Read/Write
Hub
Field Reset | HCD HC Description
LPS Ob R/W R (read) LocalPowerStatus
The Root Hub does not support the local power status feature;
thus, this bit is always read as ‘0'.
(write) ClearGlobalPower
In global power mode (PowerSwitchingMode=0), This bit is
written to ‘1’ to turn off power to all ports (clear PortPowerStatus).
In per-port power mode, it clears PortPowerStatus only on ports
whose PortPowerControlMask bit is not set. Writing a ‘0’ has no
effect.
OocCl Ob R R/W | OverCurrentindicator
This bit reports overcurrent conditions when the global reporting is
implemented. When set, an overcurrent condition exists. When
cleared, all power operations are normal. If per-port overcurrent
protection is implemented this bit is always ‘0’
DRWE Ob R/W R (read) DeviceRemoteWakeupEnable
This bit enables a ConnectStatusChange bit as a resume event,
causing a USBSUSPEND to USBRESUME state transition and setting
the ResumeDetected interrupt.
0 = ConnectStatusChange is not a remote wakeup event.
1 = ConnectStatusChange is a remote wakeup event.
(write) SetRemoteWakeupEnable
Writing a '1' sets DeviceRemoveWakeupEnable. Writing a '0'
has no effect.
LPSC Ob R/W R (read) LocalPowerStatusChange
The Root Hub does not support the local power status feature;
thus, this bit is always read as ‘0’
(write) SetGlobalPower
In global power mode (PowerSwitchingMode=0), This bit is
written to ‘1’ to turn on power to all ports (clear PortPowerStatus).
In per-port power mode, it sets PortPowerStatus only on ports
whose PortPowerControlMask bit is not set. Writing a ‘0’ has no
effect.
CCIC Ob R/W | R/W | OverCurrentindicatorChange
This bit is set by hardware when a change has occurred to the OCI
field of this register. The HCD clears this bit by writing a ‘1’
Writing a ‘0’ has no effect.
CRWE - W R (write) ClearRemoteWakeupEnable

Writing a '1' clears DeviceRemoveWakeupEnable. Writing a "0’
has no effect.

132

OpenHCI - Open Host Contraller Interface Specification for USB

7.4.4 HcRhPortStatus[1:NDP] Register

The HcRhPortSatug[1:NDP] register is used to control and report port events on a per-port basis.
Number DownstreamPor ts represents the number of HcRhPortStatus registers that are implemented
in hardware. The lower word is used to reflect the port status, whereas the upper word reflects the
gtatus change bits. Some status bits are implemented with specia write behavior (see below). If a
transaction (token through handshake) isin progress when awrite to change port status occurs, the

resulting port status change must be postponed until the transaction completes. Reserved bits should
aways be written ‘0.

3 212112 2f2 1|o0|ojo ofo|ofo|ofo
1 1/0]9(8|7]6]5 0|9|8[7 5(4]3]|2]|1]0
PIO|P|P|C L|P P|P[P[P|C
Reserved rlclslels Reserved slp Rsvd rlolslelc
S|I|[S|S|C D|S S|C|S|S|S
C|C|C|C A I
Figure 7-22: HcRhPortStatus Register
Root Read/Write
Hub
Field Reset [HCD HC Description
CCs Ob R/W | R/W | (read) CurrentConnectStatus

This bit reflects the current state of the downstream port.
0 = no device connected
1 = device connected

(write) ClearPortEnable

The HCD writes a ‘1’ to this bit to clear the PortEnableStatus bit.
Writing a ‘0’ has no effect. The CurrentConnectStatus is not
affected by any write.

Note: This bit is always read ‘1b’ when the attached device is
nonremovable (DeviceRemoveable[NDP]).

133

OpenHCI - Open Host Contraller Interface Specification for USB

Field

Root
Hub
Reset

Read/Write

HCD

HC

Description

PES

Ob

R/W

R/W

(read) PortEnableStatus

This bit indicates whether the port is enabled or disabled. The Root
Hub may clear this bit when an overcurrent condition, disconnect
event, switched-off power, or operational bus error such as babble is
detected. This change also causes PortEnabledStatusChange to
be set. HCD sets this bit by writing SetPortEnable and clears it
by writing ClearPortEnable. This bit cannot be set when
CurrentConnectStatus is cleared. This bit is also set, if not
already, at the completion of a port reset when ResetStatusChange
is set or port suspend when SuspendStatusChange is set.

0 = port is disabled

1 = port is enabled

(write) SetPortEnable

The HCD sets PortEnableStatus by writing a ‘1. Writing a ‘0’ has
no effect. If CurrentConnectStatus is cleared, this write does not
set PortEnableStatus, but instead sets ConnectStatusChange.
This informs the driver that it attempted to enable a disconnected
port.

PSS

Ob

R/W

R/W

(read) PortSuspendStatus

This bit indicates the port is suspended or in the resume sequence.
Itis set by a SetSuspendState write and cleared when
PortSuspendStatusChange is set at the end of the resume
interval. This bit cannot be set if CurrentConnectStatus is cleared.
This bit is also cleared when PortResetStatusChange is set at the
end of the port reset or when the HC is placed in the USBRESUME
state. If an upstream resume is in progress, it should propagate to
the HC.

0 = port is not suspended

1 = port is suspended

(write) SetPortSuspend

The HCD sets the PortSuspendStatus bit by writing a ‘1’ to this bit.
Writing a ‘0" has no effect. If CurrentConnectStatus is cleared, this
write does not set PortSuspendStatus; instead it sets
ConnectStatusChange. This informs the driver that it attempted to
suspend a disconnected port.

POCI

Ob

R/W

R/W

(read) PortOverCurrentindicator

This bit is only valid when the Root Hub is configured in such a way
that overcurrent conditions are reported on a per-port basis. If per-
port overcurrent reporting is not supported, this bit is set to 0. If
cleared, all power operations are normal for this port. If set, an
overcurrent condition exists on this port. This bit always reflects the
overcurrent input signal

0 = no overcurrent condition.

1 = overcurrent condition detected.

(write) ClearSuspendStatus
The HCD writes a ‘1’ to initiate a resume. Writing a ‘0’ has no effect.
A resume is initiated only if PortSuspendStatus is set.

134

OpenHCI - Open Host Contraller Interface Specification for USB

Root Read/Write
Hub

Field Reset [HCD HC Description

PRS Ob R/W | R/W | (read) PortResetStatus
When this bit is set by a write to SetPortReset, port reset signaling
is asserted. When reset is completed, this bit is cleared when
PortResetStatusChange is set. This bit cannot be set if
CurrentConnectStatus is cleared.
0 = port reset signal is not active
1 = port reset signal is active
(write) SetPortReset
The HCD sets the port reset signaling by writing a ‘1’ to this bit.
Writing a ‘0’ has no effect. If CurrentConnectStatus is cleared, this
write does not set PortResetStatus, but instead sets
ConnectStatusChange. This informs the driver that it attempted to
reset a disconnected port.

PPS Ob R/W | R/W | (read) PortPowerStatus
This bit reflects the port’s power status, regardless of the type of
power switching implemented. This bit is cleared if an overcurrent
condition is detected. HCD sets this bit by writing SetPortPower
or SetGlobalPower. HCD clears this bit by writing
ClearPortPower or ClearGlobalPower. Which power control
switches are enabled is determined by PowerSwitchingMode and
PortPortControlMask[NDP]. In global switching mode
(PowerSwitchingMode=0), only Set/ClearGlobalPower controls
this bit. In per-port power switching (PowerSwitchingMode=1), if
the PortPowerControlMask[NDP] bit for the port is set, only
Set/ClearPortPower commands are enabled. If the mask is not
set, only Set/ClearGlobalPower commands are enabled. When
port power is disabled, CurrentConnectStatus, PortEnableStatus,
PortSuspendStatus, and PortResetStatus should be reset.
0 = port power is off
1 = port power is on
(write) SetPortPower
The HCD writes a ‘1’ to set the PortPowerStatus bit. Writing a ‘0’
has no effect.
Note: This bit is always reads ‘1b’ if power switching is not
supported.

LSDA Xb R/W | R/W | (read) LowSpeedDeviceAttached
This bit indicates the speed of the device attached to this port.
When set, a Low Speed device is attached to this port. When clear,
a Full Speed device is attached to this port. This field is valid only
when the CurrentConnectStatus is set.
0 = full speed device attached
1 = low speed device attached
(write) ClearPortPower
The HCD clears the PortPowerStatus bit by writing a ‘1’ to this bit.
Writing a ‘0’ has no effect.

135

OpenHCI - Open Host Contraller Interface Specification for USB

Root Read/Write
Hub

Field Reset [HCD HC Description

CSsC Ob R/W | R/W | ConnectStatusChange
This bit is set whenever a connect or disconnect event occurs. The
HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect. If
CurrentConnectStatus is cleared when a SetPortReset,
SetPortEnable, or SetPortSuspend write occurs, this bit is set to
force the driver to re-evaluate the connection status since these
writes should not occur if the port is disconnected.
0 = no change in CurrentConnectStatus
1 = change in CurrentConnectStatus
Note: If the DeviceRemovable[NDP] bit is set, this bit is set only
after a Root Hub reset to inform the system that the device is
attached.

PESC Ob R/W | R/W | PortEnableStatusChange
This bit is set when hardware events cause the PortEnableStatus
bit to be cleared. Changes from HCD writes do not set this bit. The
HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect.
0 = no change in PortEnableStatus
1 = change in PortEnableStatus

PSSC Ob R/W | R/W | PortSuspendStatusChange
This bit is set when the full resume sequence has been completed.
This sequence includes the 20-s resume pulse, LS EOP, and 3-ms
resychronization delay. The HCD writes a ‘1’ to clear this bit.
Writing a ‘0’ has no effect. This bit is also cleared when
ResetStatusChange is set.
0 = resume is not completed
1 = resume completed

OCIC Ob R/W | R/W | PortOverCurrentindicatorChange
This bit is valid only if overcurrent conditions are reported on a per-
port basis. This bit is set when Root Hub changes the
PortOverCurrentindicator bit. The HCD writes a ‘1’ to clear this
bit. Writing a ‘0’ has no effect.
0 = no change in PortOverCurrentindicator
1 = PortOverCurrentindicator has changed

PRSC Ob R/W | R/W | PortResetStatusChange
This bit is set at the end of the 10-ms port reset signal.
The HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect.
0 = port reset is not complete
1 = port reset is complete

136

OpenHCI - Open Host Contraller Interface Specification for USB

APPENDIX A
PCl INTERFACE

PClI CONFIGURATION

This section describes the configuration registers necessary for the OpenHCI-compliant USB Host
Controller to interface with the other system components in a PCI-based PC host. Specifically, only the
bits relevant to the implementation of a USB Host Controller with PCI interface, which complieswith
Release 1.0 of the OpenHCI Specification, are described here. For the definition of the other
bits/registers which are not described here, please refer to the PCl Specification, Revison 2.1.

Inatypica PCl-based PC host, the registers described here are accessed for set-up during PCI
initidization. They might aso be accessed through specid cycles during norma system runtime.
Header type 0 isthe format for the device s configuration header region, the first 16 Dwords. They are
also commonly cdled the PCI configuration spaces of a PCl device. For the OpenHCI-compliant
USB Host Controller with PCI interface, the operationa regigters (i.e., PCI nonconfiguration spaces)
that are described in the Operational Registers chapter are directly memory-mapped into the main
memory of the PC hogt system. “Reset” issued to the Host Controller through its respective
programming interface does not affect the contents of the PCI configuration space (contents of the
operationd registers of the Root Hub are also not affected). “Hardware reset” issued by the system
logic in the PC hogt, during system power-up and “cold-boot”, causes dl of the on-chip registers of the
Host Controller and the Root Hub to return their default values.

In the following sections, the PCI configuration spaces are described in relation to their individua
logical respongibilities. As such, they are of ether byte-/word-oriented. Nevertheless, the dignment for
decoding purpose should adhere drictly to those defined in the PCl Specification, Revision 2.1.

Note: The LATENCY_TIMER inthe PCI configuration spaces defines the minimum amount of time
that the Host Controller is permitted to retain ownership of the bus after it has acquired bus
ownership and hasinitiated a subsequent transaction. 1t should be st to avalue that reflects the
nomind burst size of the underlying device, resulting in a good compromise between the
utilization and efficiency of the PCI bus. In determining the vaue, it should be considered that
the maximum size of packet transferred over the USB ranges from 64 bytesto 1023 bytes. A
vaue of *16h’ isrecommended, asit will dlow atota of 24 PCI clocks, sufficient for aburst
transfer of 64-byte (assuming atarget initia latency of 8 PCI clocks).

137

OpenHCI - Open Host Contraller Interface Specification for USB

PCI Configuration Spaces for OpenHCI-compliant USB Host

Controller

Table A-1 provides asummary of the registers that are necessary for the OpenHCI-compliant USB
Host Controller to be successfully configured in a PCI-based PC host. Those registers which are
implementation-dependent are not described in the table; their implementation is Ieft to the individua
manufacturers for innovation. However, they are defined in the PCI Specification, Revision 2.1 (PCI
Specid Interest Group, 1995).

TableA - 1. OpenHCI-Reated PCI Configuration Registers
Offset Register Description
05-04 COMMAND Provides coarse control over a device's ability to generate
and respond to PCI cycles
0B-09 CLASS CODE Identifies the generic function of the device
13-10 BAR_OHCI Specifies the base address of a contiguous block in the main
memory of the PC host, from which 4 KB of directly-mapped
addressing spaces are reserved by OpenHCI for the
operational registers of the Host Controller
PCI Device
COMMAND
CLASS CODE OpenHCl

BAR_OHCI >

FigureA -

1. ThePCI Configuration Spacesfor OpenHCI

138

OpenHCI - Open Host Contraller Interface Specification for USB

COMMAND Register

Thisregister provides coarse control over the device' s ability to generate and respond to PCI cycles. It
isimperative of the OpenHCI standard that the Host Controller has to support both PCI bus-mastering
and memory-mapping of dl operationd regigersinto the main memory of the PC host. Consequently,
thefiddsM A and BM should dways be set to * 1b's during device configuration.

Once the Host Controller has started processing endpoint lists of periodic and nonperiodic, the action to
resst ether fiedd M A or BM to its default value should be gpproached with caution. If thefidd M A is
reset to ‘0, the Host Controller can no longer respond to any software command addressed to it and
interrupt generation is halted, while the Host Controller can still generate the SOF token at the beginning
of eech frame. If thefiddd BM isreset to ‘0, the Host Controller will no longer be able to read
Descriptors (both Endpoint and Transfer) from the main memory, nor can it update the HCCA partition

in the main memory.

TableA - 22 COMMAND Register

FIELD BITS Read/ | DESCRIPTION

Write
R/W Refer to PCI Specification, Revision 2.1, for definition
MA 1 R/W MEMORY ACCESS

Default ‘Ob’ Indicates the device’s ability to respond to PCI
memory cycles

BM 2 R/W BUS MASTER

Default ‘Ob’ Indicates the device’s ability to act as a bus-master
15-9 R/W Refer to PCI Specification, Revision 2.1, for definition

CLASS CODE Register

Thisregister identifies the basic function of the device, and a specific programming interface code for an
OpenHCI-compliant USB Host Contraller.

TableA - 3: CLASS _CODE Register

FIELD BITS | Read/ | DESCRIPTION
Write

Pl 7-0 R PROGRAMMING INTERFACE
A constant value of ‘10h’ Identifies the device being an OpenHCI
Host Controller

SC 15-8 R SUB CLASS
A constant value of ‘03h’ Identifies the device being of Universal
Serial Bus

BC 23-16 | R BASE CLASS
A constant value of ‘OCh’ Identifies the device being a Serial Bus
Controller

139

OpenHCI - Open Host Contraller Interface Specification for USB

BAR_OHCI Register

The BAR_OHCI register specifies the base address of a contiguous memory space in the main memory
of the PC hogt, which is reserved for the operationd registers defined by the OpenHCI Specification,
Release 1.0. All of the operationd registers described in Chapter 7 of this document are directly
mapped into this memory space. In reference to the PCl Specification, Revison 2.1, the Host
Contraller Driver will dways alocate a memory band of 4 KB for the OpenHCI Host Controller’s
operationd registers as defined in Chapter 7. Thisis despite the fact that the number of operationd
registers defined by the OpenHCI Specification, Release 1.0, isfar lessthan 4 KB. Regardless of
whether the hardware vendor of a OpenHCI-compliant USB Host Controller chooses to implement the
decoding logic for bits[11:0] or not, the respective hardware must be able to decode the operational
registers defined in Chapter 7. When any of the addresses between the block of operationa registers
and the 4-KB upper-bound is accessed, the hardware is not required to respond and the access can
be ignored.

Those hardware registers that are used to implement vendor specific features are not covered by the

OpenHCI Specification, Release 1.0. Consequently, those vendor-specific hardware registers should
not be mapped into the memory space sarting at the address location as indicated by BAR_OHCI.

TableA - 4: BAR_OHCI Register

FIELD BITS | Read/ | DESCRIPTION
Write
IND 0 R INDICATOR

A constant value of ‘Ob’ Indicates that the operational registers of
the device are mapped into memory space of the main memory of
the PC host system

TP 2-1 R TYPE

A constant value of ‘00b’ Indicates that the base register is 32-
bit wide and can be placed anywhere in the 32-bit memory space;
i.e., lower 4 GB of the main memory of the PC host

PM 3 R PREFETCH MEMORY

A constant value of ‘Ob’ Indicates that there is no support for
“prefetchable memory”

11-4 R/W Default value of ‘O0h’ and is read only Represents a maximum
of 4-KB addressing space for the OpenHCI's operational registers
BAR 31-12 | RIW BASE ADDRESS

Specifies the upper 20 bits of the 32-bit starting base address. This
represents a maximum of 4-KB addressing space for the
OpenHCI’s operational registers

140

OpenHCI - Open Host Contraller Interface Specification for USB

APPENDIX B
LEGACY SUPPORT INTERFACE SPECIFICATION

OVERVIEW

To support applications and drivers in non-USB-aware environments (e.g., DOS), the Host Controller
needs to provide some amount of hardware support for the emulation of a PS/2 keyboard and/or
mouse by their USB equivdents. For Open HCI, this emulation support is provided by a set of
registers that are controlled by code running in SMM. Working in conjunction, this hardware and
software produces approximately the same behavior-to-application code as would be produced by a
PS/2-compatible keyboard and/or mouse interface.

To minimize hardware impact, the Host Controller accesses a USB keyboard and/or mouse using the
standard OpenHCI descriptor-based accesses. The emulation code sets up the appropriate Endpoint
Descriptors and Transfer Descriptors that cause data to be sent to or received from aUSB
keyboard/mouse using the norma USB protocols. When data is recelved from the keyboard/mouse,
the emulation code is notified and becomes responsible for trandating the USB keyboard/mouse data
into a data sequence that is equivaent to what would be produced by a PS2-compatible
keyboard/mouse interface. The trandated datais made available to the system through the legacy
keyboard interface 1/0 addresses at 60h and 64h. Likewise, when data/control isto be sent to the
keyboard (as indicated by the system writing to the legacy keyboard interface), the emulation code is
notified and becomes respongible for trandating the information into gppropriate data to be sent to the
USB keyboard/mouse through the transfer descriptor mechanism.

On the PS/2 keyboard/mouse interface, aread of 1/0 port 60h returns the current contents of the
keyboard output buffer; aread of I’ O port 64h returns the contents of the keyboard status register. An
I/0O write to port 60h or 64h puts data into the keyboard input buffer (dataiis being input into the
keyboard subsystem). When emulation is engbled, reads and writes of registers 60h and 64h are
captured in HeeOutput, HeceStatus, and/or Heel nput operational registers.

The emulation hardware described in this document supports a mixed environment in which ether the
keyboard or mouseislocated on USB and the other device is attached to a standard PS/2 interface.

141

OpenHCI - Open Host Contraller Interface Specification for USB

OPERATIONAL THEORY

Keyboard/Mouse Input

The Interrupt Transfer Descriptor for the USB keyboard and/or mouse is processed at the rate
established by the Endpoint Descriptor’ s location(s) in the interrupt list (a 1-ms rate is the recommended
rate for emulation). The Transfer Descriptors are processed as normal by the Host Controller. When
asuccessful transfer of data has occurred from the keyboard, the Transfer Descriptor is moved to the
Done Queue by the Host Controller. At the beginning of the next frame when the interrupt associated
with the transfer completion isto be signded, an interrupt is generated. System software should ensure
that the I nterruptRouting bitin HcControl isset to 1 S0 that these interrupts will result in an SMI.
Upon receipt of the SMI, the emulation software removes the Transfer Descriptor from the Done
Queug, clears the HC IRQ, and trand ates the keyboard/mouse data into a equivalent PS/2-compatible
sequence for presentation to the application software. For each byte of PS/2-compatible data that isto
be presented to the applications software, the emulation code writesto the HceOutput register. The
emulation code then sets the gppropriate bitsin the HceStatus register (normaly, OutputFull is set for
keyboard data and OutputFull plus AuxOutputFull for mouse data). If keyboard/mouse interrupts
are enabled, setting the HeceStatus register bits cause the generation of an IRQ1 for keyboard data and
IRQ12 for mouse data. The emulation code then exits and waits for the next emulation interrupt.

When the host CPU exits from SMM, it can service the pending IRQY/IRQ12. Thisnormaly resultsin
aread from 1/0O port 60h. When 1/0 port 60h is read, the Host Cortroller intercepts the access and
returns the current contents of HeeOutput. The Host Controller then aso clears the OutputFull bit in
HceSatus and de-asserts IRQL/IRQ12.

If the emulation software has multiple characters to send to the gpplication software, it setsthe
Char acter Pending bit in the HceControl register. This causes the Host Controller to generate an
emulation interrupt on the next frame boundary after the application has read from port 60h
(HceOutput.)

142

OpenHCI - Open Host Contraller Interface Specification for USB

Keyboard Output

Keyboard output isindicated by application software writing data to either 1/0 address 60h or 64h.
Upon awrite to either address, the Host Controller captures the data in the Heel nput register and,
except in the case of a Gate A20 sequence, updates the HceStatus register’ s I nputFull and CmdData
bits. When the InputFull bit is set, an emulation interrupt is generated.

Upon receipt of the emulation interrupt, the emulation software reads HceControl and HceStatus to
determine the cause of the emulation interrupt and performs the operation indicated by the data.

Emulation Interrupts

Emulation interrupts are caused by reads and writes of the emulation registers. Emulation software can
aso receive interrupts due to Host Controller events as defined in the OpenHCI base specification.
However, as used in this document, these are not emulation interrupts.

I nterrupts generated by the emulation hardware are steered by the Host Controller to either an SMI or
the standard Host Controller Interrupt. Steering is determined by the setting of the InterruptRouting
bit in the HcControl Regigter.

Emulation interrupts for data.coming from the keyboard/mouse are generated on frame boundaries. At
the beginning of each frame, the conditions which define asynchronous emulation interrupt are checked
and, if an interrupt condition exigts, the emulation interrupt is Sgnaled to the hogt at the same time the
interrupts are coming from the Host Controller’ s norma USB processing. This has the effect of
reducing the number of SMIsthat are generated for legacy input to no more than 1,000 per second.
Although 4ill somewhat large, this number of interrupts is less than the number that could be generated if
emulation interrupts were not merged with the normal Host Controller interrupts.

The number of emulation interrupts is limited because the maximum rate of data ddivery to an
gpplication cannot be more than 1,000 bytes (key strokes) per second. A benefit of thisrule isthat, for
norma keyboard and mouse operations, only one SMI isrequired for each data byte sent to the
goplication. Additiondly, ddlay of the interrupt until the next Start of Frame causes data persstence for
keyboard input data that is equivaent to that provided by an 8042.

143

OpenHCI - Open Host Contraller Interface Specification for USB

Mixed Environment

A mixed environment is one in which a USB device and a PS'2 device are supported Ssmultaneoudy
(eg., aUSB keyboard and a PS/2 mouse). The mixed environment is supported by alowing the
emulation software to control the PS/2 interface. Control of thisinterface includes capturing 1/10
accesses to port 60h and 64h and aso includes capture of interrupts from the PS/2 keyboard controller.
IRQ1 and IRQ12 from the legacy keyboard controller are routed through the Host Controller. When
ExternallRQEnN in HceControl is set, IRQ1 and IRQ12 from the legacy keyboard controller are
blocked a the Host Controller and an emulation interrupt is generated ingtead. Thisdlowsthe
emulation software to capture data coming from the legacy controller and presents it to the application
through the emulated interface.

Gate A20 Sequence

The Gate A20 sequence occurs frequently in DOS applications. Mogtly, the sequenceisto engble
AZ20. To reduce the number of SMIs caused by the Gate A20 sequence, the host controller generates
an SMI only if the A20 sequence would change the state of Gate A20.

The Gate A20 sequenceisinitiated with awrite of D1h to port 64h. On detecting thiswrite, the HC
sets the GateA 20Sequence hitin HeceControl. 1t captures the data byte in Heelnput but does not set
InputFull bitin HceStatus. When GateA 20Sequence is set, awrite of avaueto I/O port 60h that
has bit 1 set to avaue different than A20State in HceControl causes InputFull to be set and causes
an interrupt. An SMI with both InputFull and GateA20Sequence set indicates that the application is
trying to change the setting of Gate A20 on the keyboard controller. However, when
GateA20Sequence is set and awrite of avaueto 1/0 port 60h that has bit 1 set to the same value as
A20State in HceControl is detected, then no interrupt can occur.

As mentioned above, awrite to 64h of any value other than D1h causes GateA20Sequence to be
cleared. If GateA20Sequence isactive and avaue of FFh iswritten to port 64h, GateA20Sequence
is cleared but InputFull isnot set. A write of any value other than D1h or FFh causes InputFull to be
set which then causes an SMI. A write of FFh to port 64h when GateA20Sequence isnot set causes
InputFull to be set.

144

OpenHCI - Open Host Contraller Interface Specification for USB

SYSTEM REQUIREMENTS

The sections below define the system requirements that must be met in order for the OpenHCI legacy
support to function properly.

Host Controller Mapping

The Host Controller uses memory addresses to enable system software to access its operational
regigers. In aPCl implementation, the address of the Host Controller operationsregistersissetin
BAR_OHCI. The addressrange specified in BAR_OHCI must be accessible to SMM code. The
addressin BAR_OHCI should not be modified by any software while the emulation software has
control of the Host Controller. The only exception to thisis when the OS is booting and is trying to
interrogate the PCI bus. 1t iscommon for an OS, asit is loaded, to enumerate and ‘sz€' the various
buses on the machine. For a PCl system, the OS typicaly writes avaue to each card sBAR to
determine the memory space occupied by that card. If emulation is running during enumeration, the
Host Controller may generate an SMI asthe OS is changing the BAR from the vaue that the emulation
codeisusng.

To prevent problems during enumeration and ‘sizing’ of the PCI bus, a gpecific OS sequence is defined
for ‘'szing’ the Host Controller on PCI systems:

Save the current value of the PCI COMMAND register

Save the current vdue of BAR_OHCI

Clear the M emory Access* hitinthe PCI COMMAND regigter.
Write OXFFFFFFFF to BAR_OHCI

Read BAR_OHCI to determine the block size

Regtore the origind verson of BAR_OHCI

Restore the PCI COMMAND register

(* The Memory Accessis bit 1 of the PCI COMMAND regigter. Thisfidd has severd diasesin various
documents but is labeled Memory Accessin Appendix A of the OpenHCI Host Controller

Specification.)

The SMM code that services SMI should check that the M emory Access bit on the Host Controller is
st before accessing the Host Controller operationd registers.

The HC should not generate an emulation interrupt while the M emory Access bit not setto 1. If an
interrupt isbeing Sgnaled when Memory Access is st to 0, the Host Controller inactivates that
interrupt (including SMI). If an interrupt condition exisswhen Memory Accessisset to 1, that
interrupt isimmediately sgnded. If Externall RQEnN in HceControl isnot set, IRQ1 and IRQ12 are
propagated through the Host Controller regardiess of the setting of M emory Access.

145

OpenHCI - Open Host Contraller Interface Specification for USB

SMI Signaling

The OpenHCI controller must be able to signa an SMI event to the x86 system processor. Since none
of the standard add-in card interfaces make provison for SMI sgnaling, it is assumed that this
requirement implies that the OpenHCI controller islocated on the system motherboard.

Intercept Port 60h and 64h Accesses

When emulation is enabled, 1/0 accesses of 1/0 ports 60h and 64h must be handled by the Host
Controller. The Host Controller must be positioned in the system so that it can do a positive decode of
accesses to 1/0 addresses 60h and 64h on the PCI bus. If akeyboard controller is present in the
system, it must either use subtractive decode or have provisions to disable its decode of ports 60h and
64h. If the legacy keyboard controller uses postive decode and is turned off during emulation, it must
be possible for the emulation code to quickly re-enable and disable the legacy keyboard controller’s
60h and 64h decode. Thisis necessary to support a mixed operating environment.

Interrupts

The Host Controller must connect to IRQ1 and IRQ12 on the system board and be wired OR with

other non-legacy IRQ1 and IRQ12 sources. IRQ1 and IRQ12 from the legacy keyboard controller (if
present) must be routed through the Host Controller.

Run-time Memory

Legacy emulation requires that the Host Controller have read/write access to a portion of system

memory that is not used by a system OS for any purpose. 1n addition, this memory must be accessible
by the host CPU while the host CPU isin SMM.

146

OpenHCI - Open Host Contraller Interface Specification for USB

PROGRAMMING INTERFACE

Modifications to existing registers

HcRevision Register
The following modification is needed to the HcRevision Regidter:

3 oo 0
1 8|7 0
reserved L REV

Figure B-1. HcRevision Register

TableB-1: HcRevision Register Fields

Read/Write
Key Reset | HCD HC Description
REV 10h R R Revision

This read-only field contains the BCD representation of the version
of the HCI specification that is implemented by this HC. For
example, a value of 11h corresponds to version 1.1. All of the HC
implementations that are compliant with this specification will have
a value of 10h.

L 1b R R Legacy

This read-only field is 1 to indicate that the legacy support
registers are present in this HC.

Legacy Support Registers

Four operationd registers are used to provide the legacy support . Each of these registersis located on
a 32-bit boundary. The offset of these registersis rdative to the base address of the Host Controller
operationa registers with HceControl located at offset 100h.

Table B-2: Legacy Support Registers

Offset Register Description

100h HceControl Used to enable and control the emulation hardware and report
various status information.

104h Hcelnput Emulation side of the legacy Input Buffer register.

108h HceOutput Emulation side of the legacy Output Buffer register where keyboard
and mouse data is to be written by software.

10Ch HceStatus Emulation side of the legacy Status register.

147

OpenHCI - Open Host Contraller Interface Specification for USB

Three of the operationd registers (HceStatus, Heelnput, HeeOutput) are accessible at 1/0 address
60h and 64h when emulation is enabled. Reads and writes to the registers using 1/0 addresses have
sde effects as outlined in the Table B-3.

Table B-3: Emulated Registers

/0 Cycle Register Contents
Address Type Accessed/Modified Side Effects

60h IN HceOutput IN from port 60h will set OutputFull in HceStatus
to 0

60h ouT Hcelnput OUT to port 60h will set InputFull to 1 and
CmdData to 0 in HceStatus.

64h IN HceStatus IN from port 64h returns current value of HceStatus
with no other side effect.

64h ouT Hcelnput OUT to port 64h will set InputFull to 0 and
CmdData in HceStatus to 1.

Hcelnput Register

Table B-4: Hcel nput Registers

bit Field R/W Description
7-0 InputData R/W | This register holds data that is written to I/O ports 60h and 64h.
8-31 Reserved -

1/0O datathat iswritten to ports 60h and 64h is captured in this register when emulation isenabled. This
register may be read or written directly by accessng it with its memory address in the Host Controller’s
operationd register space. When accessed directly with amemory cycle, reads and writes of this
register have no side effects.

HceOutput Register

Table B-5: HceOutput Registers

bit Field R/W Description
7-0 OutputData R/W | This register hosts data that is returned when an I/O read of port
60h is performed by application software.

8-31 Reserved -

The data placed in this register by the emulation software is returned when /O port 60h is read and
emulaion isenabled. On aread of thislocation, the OutputFull bitin HceStatusis set to 0.

148

OpenHCI - Open Host Contraller Interface Specification for USB

HceStatus Register

Table B-6: HceStatus Register

bit Field R/W Description

0 OutputFull R/W | The HC sets this bit to 0 on a read of I/O port 60h. If IRQEnN is set
and AuxOutputFull is set to 0, then an IRQ1 is generated as long
as this bit is setto 1. If IRQEnN is set and AuxOutputFull is set to
1, then an IRQ12 is generated as long as this bit is set to 1.

While this bit is 0 and CharacterPending in HceControl is set to
1, an emulation interrupt condition exists.

1 InputFull R/W | Except for the case of a Gate A20 sequence, this bit is set to 1 on
an /O write to address 60h or 64h. While this bit is set to 1 and
emulation is enabled, an emulation interrupt condition exists.

2 Flag R/W | Nominally used as a system flag by software to indicate a warm or
cold boot.

3 CmdData R/W | The HC sets this bit to 0 on an 1/O write to port 60h and to 1 on an
1/0 write to port 64h.

4 Inhibit Switch R/W | This bit reflects the state of the keyboard inhibit switch and is set if

the keyboard is NOT inhibited.
5 AuxOutputFull R/W | IRQ12 is asserted whenever this bit is set to 1 and OutputFull is
set to 1 and the IRQEnN bit is set.

6 Time-out R/W | Used to indicate a time-out
7 Parity R/W | Indicates parity error on keyboard/mouse data.
8-31 Reserved -

The contents of the HceStatus Register are returned on an 1/0 Read of port 64h when emulation is
enabled. Reads and writes of port 60h and writes to port 64h can cause changesin thisregister.
Emulation software can directly access this register through its memory address in the Host Controller’s
operational register space. Accessng thisregister through its memory address produces no side effects.

149

OpenHCI - Open Host Contraller Interface Specification for USB

HceControl Register

TableB-7:

HceControl Register

bit

Field

Reset

R/W

Description

EmulationEnable

Ob

R/W

When set to 1, the HC is enabled for legacy emulation. The
HC decodes accesses to 1/O registers 60h and 64h and
generates IRQ1 and/or IRQ12 when appropriate. Additionally,
the HC generate s an emulation interrupt at appropriate times
to invoke the emulation software.

Emulationinterrupt

This bit is a static decode of the emulation interrupt
condition.

CharacterPending

Ob

R/W

When set, an emulation interrupt is generated when the
OutputFull bit of the HceStatus register is set to 0.

IRQEN

Ob

R/W

When set, the HC generates IRQ1 or IRQ12 as long as the
OutputFull bit in HceStatus is set to 1. If the
AuxOutputFull bit of HceStatus is 0, then IRQL1 is
generated; if it is 1, then an IRQ12 is generated.

ExternallRQENn

Ob

R/W

When set to 1, IRQ1 and IRQ12 from the keyboard controller
causes an emulation interrupt. The function controlled by
this bit is independent of the setting of the EmulationEnable
bit in this register.

GateA20Sequence

Ob

R/W

Set by HC when a data value of D1h is written to I/O port 64h.
Cleared by HC on write to I/O port 64h of any value other than
D1h.

IRQ1Active

Ob

R/W

Indicates that a positive transition on IRQ1 from keyboard
controller has occurred. SW may write a 1 to this bit to clear
it (set it to 0). SW write of a 0 to this bit has no effect.

IRQ12Active

Ob

R/W

Indicates that a positive transition on IRQ12 from keyboard
controller has occurred. SW may write a 1 to this bit to clear
it (set it to 0). SW write of a 0 to this bit has no effect.

A20State

Ob

R/W

Indicates current state of Gate A20 on keyboard controller.
Used to compare against value written to 60h when
GateA20Sequence is active.

9-31

Reserved

Must read as 0s.

150

OpenHCI - Open Host Contraller Interface Specification for USB

IMPLEMENTATION NOTES

Emulation Interrupt Decode

Emulation interrupts are of two types. frame synchronous and asynchronous. For frame synchronous
interrupts, the conditions for a frame synchronous interrupt are sampled by the Host Controller at each
USB frameintervd and, if an interrupt condition exidts, it isSgnded at that time. For asynchronous
interrupts, the interrupt is sgnaed as soon as the condition exists.

The equation for the synchronous emulation interrupt conditionis

synchronousl nterrupt = HceControl. Enul ati onEnabl e AND
HceCont rol . Char act er Pendi ng AND NOT(HceSt at us. Qut put Ful |')

When this decode is true, an emulation interrupt is generated at the start of the next USB frame. The
interrupt condition is latched until the decode becomesfase. The equation for the asynchronous
interrupt condition is:

asynchronousl nterrupt = (HceControl.Enul ati onEnabl e AND
HceStatus. I nput Ful) OR (HceControl . Externl RQEn AND
(HceControl .1 RQ1Acti ve OR HceControl .| RQL2Acti ve))

A20 Gate

The A20State bit in the host controller should be brought to a pin on the Host Controller, through
suitable buffering, for incluson in the Gate A20 logic on the motherboard.

151

